AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Recent progress on single-molecule localization microscopy

Lusheng Gu1,2,3Wei Ji1,2,3( )
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
Show Author Information

Graphical Abstract

Abstract

Super-resolution imaging based on single-molecule localization has been developed for more than a decade. These techniques can break through diffraction limit of fluorescent microscopy and initially improve the resolution by an order of magnitude to ~20 nm, by introducing photoactivatable/photoswitching probes and centroid fitting method. As the demand of biological research, the localization precision of single-molecules was further improved by several state-of-the-art methods in the past several years. This review focuses on the latest developed techniques which have greatly improved the performance of single-molecule localization microscopy, from measurement principle to hardware design. These methods are essential for the study of nanostructures and biomacromolecule dynamics inside of cells.

References

 

Aquino D, Schönle A, Geisler C, v Middendorff C, Wurm CA, Okamura Y, Lang T, Hell SW, Egner A (2011) Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 8(4): 353−359

 

Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11): 764−774

 
Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, Agrawal A, Piestun R, Moerner WE (2013) The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. Proceedings Volume 8590, Single Molecule Spectroscopy and Superresolution Imaging VI. https://doi.org/10.1117/12.2001671
 

Badieirostami M, Lew MD, Thompson MA, Moerner W (2010) Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl Phys Lett 97(16): 161103. https://doi.org/10.1063/1.3499652

 

Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325): 606−612

 

Berglund AJ, McMahon MD, McClelland JJ, Liddle JA (2008) Fast, bias-free algorithm for tracking single particles with variable size and shape. Opt Express 16(18): 14064−14075

 

Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y (2017) Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 19(1): 28−37

 

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642−1645

 

BETZIG E, TRAUTMAN JK, HARRIS TD, WEINER JS, KOSTELAK RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251(5000): 1468−1470

 

Blom H, Widengren J (2017) Stimulated emission depletion microscopy. Chem Rev 117(11): 7377−7427

 

Bourg N, Mayet C, Dupuis G, Barroca T, Bon P, Lécart S, Fort E, Lévêque-Fort S (2015) Direct optical nanoscopy with axially localized detection. Nat Photonics 9(9): 587−593

 

Brockman JM, Su H, Blanchard AT, Duan Y, Meyer T, Quach ME, Glazier R, Bazrafshan A, Bender RL, Kellner AV, Ogasawara H, Ma R, Schueder F, Petrich BG, Jungmann R, Li R, Mattheyses AL, Ke Y, Salaita K (2020) Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat Methods 17(10): 1018−1024

 

Cheezum MK, Walker WF, Guilford WH (2001) Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. Biophys J 81(4): 2378−2388

 

Chen D, Yu B, Li H, Huo Y, Cao B, Xu G, Niu H (2013) Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution. Opt Lett 38(19): 3712−3715

 

Cnossen J, Hinsdale T, Thorsen RØ, Siemons M, Schueder F, Jungmann R, Smith CS, Rieger B, Stallinga S (2020) Localization microscopy at doubled precision with patterned illumination. Nat Methods 17(1): 59−63

 

Dai M, Jungmann R, Yin P (2016) Optical imaging of individual biomolecules in densely packed clusters. Nat Nanotechnol 11(9): 798−807

 

Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951): 73−76

 

Deschamps J, Mund M, Ries J (2014) 3D superresolution microscopy by supercritical angle detection. Opt Express 22(23): 29081−29091

 

Descloux AC, Grussmayer KS, Radenovic A (2019) Parameter-free image resolution estimation based on decorrelation analysis. Nat Methods 16(ARTICLE): 918−924

 

Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233): 1159−1162

 

Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW (2018) MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci USA 115(24): 6117−6122

 

Endesfelder U, Heilemann M (2015) Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol 1251: 263−276

 

Geertsema HJ, Aimola G, Fabricius V, Fuerste JP, Kaufer BB, Ewers H (2021) Left-handed DNA-PAINT for improved super-resolution imaging in the nucleus. Nat Biotechnol 39(5): 551−554

 

Grover G, DeLuca K, Quirin S, DeLuca J, Piestun R (2012) Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). Opt Express 20(24): 26681−26695

 

Grover G, Quirin S, Fiedler C, Piestun R (2011) Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging. Biomed Opt Express 2(11): 3010−3020

 

Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, Xu T, Ji W (2019) Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 16(11): 1114−1118

 

Gu L, Li Y, Zhang S, Zhou M, Xue Y, Li W, Xu T, Ji W (2021) Molecular-scale axial localization by repetitive optical selective exposure. Nat Methods 18(4): 369−373

 

Gu L, Sheng Y, Chen Y, Chang H, Zhang Y, Lv P, Ji W, Xu T (2014) High-density 3D single molecular analysis based on compressed sensing. Biophys J 106(11): 2443−2449

 

Guo Y, Li D, Zhang S, Yang Y, Liu J-J, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5): 1430−1442

 

Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37): 13081−13086

 

Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2): 82−87

 

Gustavsson A-K, Petrov PN, Lee MY, Shechtman Y, Moerner WE (2018) 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat Commun 9(1): 123. https://doi.org/10.1038/s41467-017-02563-4

 

Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell SW (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17(2): 217−224

 

Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11): 1347−1355

 

Hell SW (2007) Far-Field Optical Nanoscopy. Science 316(5828): 1153−1158

 

Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11): 780−782

 

Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5): 339−340

 

Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11): 4258−4272

 

Huang B, Jones SA, Brandenburg B, Zhuang X (2008a) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12): 1047−1052

 

Huang B, Wang W, Bates M, Zhuang X (2008b) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864): 810−813

 

Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5): 1377−1393

 

Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, Kromann EB, Phan T, Rivera-Molina FE, Myers JR, Irnov I, Lessard M, Zhang Y, Handel MA, Jacobs-Wagner C, Lusk CP, Rothman JE, Toomre D, Booth MJ, Bewersdorf J (2016) Ultra-high resolution 3D imaging of whole cells. Cell 166(4): 1028−1040

 

Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P (2018) Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36(5): 451−459

 

Jia S, Vaughan JC, Zhuang X (2014) Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat Photonics 8(4): 302−306

 

Jouchet P, Cabriel C, Bourg N, Bardou M, Poüs C, Fort E, Lévêque-Fort S (2021) Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat photonics 15(4): 297−304

 

Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6): 527−529

 

Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, Rodal A, Yin P (2016) Quantitative super-resolution imaging with qPAINT. Nat Methods 13(5): 439−442

 

Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11(3): 313−318

 

Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323): 580−584

 

Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14): 954−956

 

Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15): 8206−8210

 

Li D, Shao L, Chen B-C, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251): aab3500. https://doi.org/10.1126/science.aab3500

 

Li Y, Buglakova E, Zhang Y, Thevathasan JV, Bewersdorf J, Ries J (2020) Accurate 4Pi single-molecule localization using an experimental PSF model. Opt Lett 45(13): 3765−3768

 

Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, Sabinina VJ, Ellenberg J, Schoen I, Ries J (2018) Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods 15(5): 367−369

 

Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910−919

 

Liu J, Wang Y, Goh WI, Goh H, Baird MA, Ruehland S, Teo S, Bate N, Critchley DR, Davidson MW (2015) Talin determines the nanoscale architecture of focal adhesions. Proc Natl Acad Sci USA 112(35): E4864−E4873

 

Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y (2014) Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space. Nat Commun 5(1): 1−8

 

Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J, Richter L, Cole F, Tinnefeld P, Stefani FD (2021) Pulsed Interleaved MINFLUX. Nano Lett 21(1): 840−846

 

McGorty R, Schnitzbauer J, Zhang W, Huang B (2014) Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt Lett 39(2): 275−278

 

Min J, Holden SJ, Carlini L, Unser M, Manley S, Ye JC (2014) 3D high-density localization microscopy using hybrid astigmatic/biplane imaging and sparse image reconstruction. Biomed Opt Express 5(11): 3935−3948

 

Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6): 557−562

 

Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2): 1185−1200

 

Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8(7): e69004. https://doi.org/10.1371/journal.pone.0069004

 

Pan L, Yan R, Li W, Xu K (2018) Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep 22(5): 1151−1158

 

Pan L, Zhang P, Hu F, Yan R, He M, Li W, Xu J, Xu K (2019) Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release. Adv Sci 6(18): 1900865. https://doi.org/10.1002/advs.201900865

 

Pape JK, Stephan T, Balzarotti F, Büchner R, Lange F, Riedel D, Jakobs S, Hell SW (2020) Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci USA 117(34): 20607−20614

 

Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5): 2782−2790

 

Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner W (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 106(9): 2995−2999

 

Przybylski A, Thiel B, Keller-Findeisen J, Stock B, Bates M (2017) Gpufit: an open-source toolkit for GPU-accelerated curve fitting. Sci Rep 7(1): 1−9

 

Quan T, Zeng S, Lu X (2010) Comparison of algorithms for localization of single fluorescent molecule in super resolution imaging. Chin J Lasers 37(11): 2714−2718

 

Quirin S, Pavani SRP, Piestun R (2012) Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc Natl Acad Sci USA 109(3): 675−679

 

Reymond L, Ziegler J, Knapp C, Wang F-C, Huser T, Ruprecht V, Wieser S (2019) SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt Express 27(17): 24578−24590

 

Ries J, Udayar V, Soragni A, Hornemann S, Nilsson KPR, Riek R, Hock C, Ewers H, Aguzzi AA, Rajendran L (2013) Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem Neurosci 4(7): 1057−1061

 

Rocha J, Corbitt J, Yan T, Richardson C, Gahlmann A (2019) Resolving cytosolic diffusive states in bacteria by single-molecule tracking. Biophys J 116(10): 1970−1983

 

Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793−795

 

Sahl SJ, Hell SW (2019) High-resolution 3D light microscopy with STED and RESOLFT. In:Bille JF (eds). High resolution imaging in microscopy and ophthalmology:new frontiers in biomedical optics. Cham (CH):Springer International Publishing. pp : 3−32

 

Saxena M, Eluru G, Gorthi SS (2015) Structured illumination microscopy. Adv Opt Photonics 7(2): 241−275

 

Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881): 1332−1336

 

Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J, Sahl SJ, Hell SW (2021) MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun 12(1): 1478. https://doi.org/10.1038/s41467-021-21652-z

 

Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6): 1198−1228

 

Schoen I, Ries J, Klotzsch E, Ewers H, Vogel V (2011) Binding-activated localization microscopy of DNA structures. Nano Lett 11(9): 4008−4011

 

Schroeder B, Jia S (2015) Frequency analysis of a self-bending point spread function for 3D localization-based optical microscopy. Opt Lett 40(13): 3189−3192

 

Schueder F, Lara-Gutiérrez J, Beliveau BJ, Saka SK, Sasaki HM, Woehrstein JB, Strauss MT, Grabmayr H, Yin P, Jungmann R (2017) Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat Commun 8(1): 2090. https://doi.org/10.1038/s41467-017-02028-8

 

Schueder F, Stein J, Stehr F, Auer A, Sperl B, Strauss MT, Schwille P, Jungmann R (2019) An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. Nat Methods 16(11): 1101−1104

 

Semwogerere D, Weeks ER (2005) Confocal microscopy. Encyc Biomater Biomed Eng 23: 1−10

 

Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103(50): 18911−18916

 

Shechtman Y, Gustavsson A-K, Petrov PN, Dultz E, Lee MY, Weis K, Moerner W (2017) Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions. Biomed Opt Express 8(12): 5735−5748

 

Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner WE (2015) Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with Tetrapod point spread functions. Nano Lett 15(6): 4194−4199

 

Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi G-Q, Zhuang X (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35): 13978−13983

 

Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106(9): 3125−3130

 

Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P (2014) Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 123: 273−294

 

Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5): 373−375

 

Song K-H, Zhang Y, Wang G, Sun C, Zhang HF (2019) Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica 6(6): 709−715

 

Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616): 82−86

 

Strauss S, Jungmann R (2020) Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat Methods 17(8): 789−791

 

Szczurek A, Klewes L, Xing J, Gourram A, Birk U, Knecht H, Dobrucki JW, Mai S, Cremer C (2017) Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Res 45(8): e56−e56

 

Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner W (2010) Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc Natl Acad Sci USA 107(42): 17864−17871

 

Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5): 2775−2783

 

Van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protocols 6(7): 991−1009

 

Wang J, Allgeyer ES, Sirinakis G, Zhang Y, Hu K, Lessard MD, Li Y, Diekmann R, Phillips MA, Dobbie IM (2021) Implementation of a 4Pi-SMS super-resolution microscope. Nat Protoc 16(2): 677−727

 

Wang S, Ding M, Chen X, Chang L, Sun Y (2017) Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells. Biomed Opt Express 8(6): 3119−3131

 

Watanabe S, Ebeling C, Oikonomou G, Shaham S, Gerton J, Jorgensen E (2011) Three-dimensional reconstruction of actin in a sensory glial cell using bi-plane PALM. Microsc Microanal 17(S2): 16−17

 

Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873): 246−249

 

Winterflood CM, Platonova E, Albrecht D, Ewers H (2015) Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging. Biophys J 109(1): 3−6

 

Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2): 185−188

 

Yan Q, Cai M, Zhou L, Xu H, Shi Y, Sun J, Jiang J, Gao J, Wang H (2019) Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Adv 1(1): 291−298

 

Zhang Y, Gu L, Chang H, Ji W, Chen Y, Zhang M, Yang L, Liu B, Chen L, Xu T (2013) Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4(8): 598−606

 

Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, Benedetti L, Li Y, Ries J, Grimm JB (2020) Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods 17(2): 225−231

 

Zhou L, Gao J, Wang H, Shi Y, Xu H, Yan Q, Jing Y, Jiang J, Cai M, Wang H (2020a) Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. Nanoscale 12(18): 9950−9957

 

Zhou Y, Zammit P, Zickus V, Taylor JM, Harvey AR (2020b) Twin-airy point-spread function for extended-volume particle localization. Phys Rev Lett 124(19): 198104. https://doi.org/10.1103/PhysRevLett.124.198104

 

Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7): 721−723

Biophysics Reports
Pages 365-376
Cite this article:
Gu L, Ji W. Recent progress on single-molecule localization microscopy. Biophysics Reports, 2021, 7(5): 365-376. https://doi.org/10.52601/bpr.2021.210023

402

Views

4

Downloads

3

Crossref

3

Scopus

0

CSCD

Altmetrics

Received: 30 June 2021
Accepted: 26 August 2021
Published: 31 October 2021
© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return