AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Protocol | Open Access

Quantifying phase separation at the nanoscale by dual-color fluorescence cross-correlation spectroscopy (dcFCCS)

Yirong Yao1Wenjuan Wang2Chunlai Chen1( )
School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
School of Life Sciences; Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

Liquid–liquid phase separation (LLPS) causes the formation of membraneless condensates, which play important roles in diverse cellular processes. Currently, optical microscopy is the most commonly used method to visualize micron-scale phase-separated condensates. Because the optical spatial resolution is restricted by the diffraction limit (~200 nm), dynamic formation processes from individual biomolecules to micron-scale condensates are still mostly unknown. Herein, we provide a detailed protocol applying dual-color fluorescence cross-correlation spectroscopy (dcFCCS) to detect and quantify condensates at the nanoscale, including their size, growth rate, molecular stoichiometry, and the binding affinity of client molecules within condensates. We expect that the quantitative dcFCCS method can be widely applied to investigate many other important phase separation systems.

References

 

Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176(3): 419−434

 

Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J, Hyman AA (2018) A user's guide for phase separation assays with purified proteins. J Mol Biol 430(23): 4806−4820

 

Bacia K, Haustein E, Schwille P (2014) Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2014(7): 709−725

 

Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5): 285−298

 

Bi H, Yin Y, Pan B, Li G, Zhao XS (2016) Scanning single-molecule fluorescence correlation spectroscopy enables kinetics study of DNA hairpin folding with a time window from microseconds to seconds. J Phys Chem Lett 7(10): 1865−1871

 

Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7): 574−585

 

Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165(7): 1686−1697

 

Ferrolino MC, Mitrea DM, Michael JR, Kriwacki RW (2018) Compositional adaptability in NPM1-SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms. Nat Commun 9(1): 5064. https://doi.org/10.1038/s41467-018-07530-1

 

Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907): 638−641

 

Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3): 697−705

 

Heyman NS, Burt JM (2008) Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J 94: 840−854

 

Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30: 39−58

 

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164(3): 487−498

 

Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4): 753−767

 

Lin CW, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128(14): 4542−4543

 

Mitrea DM, Chandra B, Ferrolino MC, Gibbs EB, Tolbert M, White MR, Kriwacki RW (2018) Methods for physical characterization of phase-separated bodies and membrane-less organelles. J Mol Biol 430(23): 4773−4805

 

Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife 5: e13571. https://doi.org/10.7554/eLife.13571

 
Normand C, Berthaud M, Gadal O, Léger-Silvestre I (2016) Correlative light and electron microscopy of nucleolar transcription in Saccharomyces cerevisiae. In: The nucleolus: methods and protocols. Németh (Eds) pp 29−40. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-3792-9_3
 

Peng S, Li W, Yao Y, Xing W, Li P, Chen C (2020) Phase separation at the nanoscale quantified by dcFCCS. Proc Natl Acad Sci USA 117(44): 27124−27131

 

Peng S, Sun R, Wang W, Chen C (2017) Single-molecule photoactivation FRET: a general and easy-to-implement approach to break the concentration barrier. Angew Chem Int Ed Engl 56(24): 6882−6885

 

Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4): 1878−1886

 

Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25(12): 730−748

 

Werner S, Ebenhan J, Haupt C, Bacia K (2018) A quantitative and reliable calibration standard for dual-color fluorescence cross-correlation spectroscopy. Chemphyschem 19(24): 3436−3444

 

Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153(2): 287−292

 

Zeng L, Palaia I, Saric A, Su X (2021) PLCgamma1 promotes phase separation of T cell signaling components. J Cell Biol 220(6): e202009154. https://doi.org/10.1083/jcb.202009154

 

Zhou M, Li W, Li J, Xie L, Wu R, Wang L, Fu S, Su W, Hu J, Wang J, Li P (2020) Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes. J Biol Chem 295(33): 11420−11434

 

Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2(5): 337−346

Biophysics Reports
Pages 29-41
Cite this article:
Yao Y, Wang W, Chen C. Quantifying phase separation at the nanoscale by dual-color fluorescence cross-correlation spectroscopy (dcFCCS). Biophysics Reports, 2022, 8(1): 29-41. https://doi.org/10.52601/bpr.2022.210026

382

Views

14

Downloads

2

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 14 July 2021
Accepted: 13 September 2021
Published: 24 February 2022
© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return