AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Isolation and proteomic study of fish liver lipid droplets

Yuwei Sun1,4Jian Heng2,3Feng Liu2,3,4Shuyan Zhang1( )Pingsheng Liu1,4( )
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved in almost all species. Excessive storage of neutral lipids in LDs is directly associated with many metabolic syndromes. Zebrafish is a better model animal for the study of LD biology due to its transparent embryonic stage compared to other organisms. However, the study of LDs in fish has been difficult due to the lack of specific LD marker proteins and the limitation of purification technology. In this paper, the purification and proteomic analysis of liver LDs of fish including zebrafish and Carassius auratus were performed for the first time. 259 and 267 proteins were identified respectively. Besides most of the identified proteins were reported in previous LD proteomes of mammals, indicating the similarity between mammal and fish LDs. We also identified many unique proteins of liver LDs in fish that are involved in the regulation of LD dynamics. Through morphological and biochemical analysis, we found that the marker protein Plin2 of zebrafish LD was located on LDs in Huh7 cells. These results will facilitate further study of LDs in fish and liver metabolic diseases using fish as a model animal.

Electronic Supplementary Material

Download File(s)
1-Supplementary materials.pdf (878 KB)
2-Supplementary tables.zip.zip (65.2 KB)

References

 

Asaoka Y, Terai S, Sakaida I, Nishina H (2013) The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 6(4): 905−914

 

Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6(8): 3256−3265

 

Beilstein F, Bouchoux J, Rousset M, Demignot S (2013) Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLoS One 8(1): e53017. https://doi.org/10.1371/journal.pone.0053017

 

Beller M, Riedel D, Jansch L, Dieterich G, Wehland J, Jackle H, Kuhnlein RP (2006) Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5(6): 1082−1094

 
Blanco AM, Unniappan S (2022) Goldfish (Carassius auratus): biology, husbandry, and research applications. In: Laboratory Fish in Biomedical Research (Eds: Angelo and Livia D'Angelo, Paolo de Girolamo) Academic Press: 373-408. https://doi.org/10.1016/B978-0-12-821099-4.00012-2
 

Bouchoux J, Beilstein F, Pauquai T, Guerrera IC, Chateau D, Ly N, Alqub M, Klein C, Chambaz J, Rousset M, Lacorte JM, Morel E, Demignot S (2011) The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell 103(11): 499−517

 

Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279(45): 46835−46842

 

Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, Burger KN, Honing S (2009) TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 185(4): 641−655

 

Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16(18): 1783−1795

 

Chen B, Zheng YM, Zhang JP (2018) Comparative study of different diets-induced NAFLD models of zebrafish. Front Endocrinol (Lausanne) 9: 366. https://doi.org/10.3389/fendo.2018.00366

 

Crunk AE, Monks J, Murakami A, Jackman M, Maclean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL (2013) Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 8(7): e67631. https://doi.org/10.1371/journal.pone.0067631

 

D'Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN, Greenberg AS, Kuhn RJ, Buhman KK (2015) Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS One 10(5): e0126823. https://doi.org/10.1371/journal.pone.0126823

 

Ding Y, Wu Y, Zeng R, Liao K (2012a) Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Acta Biochim Biophys Sin (Shanghai) 44(5): 394−406

 

Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbuchel A, Liu P (2012b) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53(3): 399−411

 

Ding Y, Zhang S, Yang L, Na H, Zhang P, Zhang H, Wang Y, Chen Y, Yu J, Huo C, Xu S, Garaiova M, Cong Y, Liu P (2013) Isolating lipid droplets from multiple species. Nat Protoc 8(1): 43−51

 

Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149(3): 942−949

 

Eichmann TO, Grumet L, Taschler U, Hartler J, Heier C, Woblistin A, Pajed L, Kollroser M, Rechberger G, Thallinger GG, Zechner R, Haemmerle G, Zimmermann R, Lass A (2015) ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6. J Lipid Res 56(10): 1972−1984

 

Farese RV Jr., Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5): 855−860

 

Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130(2): 263−279

 

Fujimoto T, Parton RG (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3(3): a004838. https://doi.org/10.1101/cshperspect.a004838

 

Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, Higashi Y, Kojima S, Takano T (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644(1): 47−59

 

Goessling W, Sadler KC (2015) Zebrafish: an important tool for liver disease research. Gastroenterology 149(6): 1361−1377

 

Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283(42): 28005−28009

 

Goodman JM (2009) Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J Lipid Res Nov 50(11): 2148−2156

 

Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811(12): 1165−1176

 

Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Kui K, Han X, Brownell N, Gross RW, Zechner R, Farese RV Jr (2011) DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 52(4): 657−667

 

Jagerstrom S, Polesie S, Wickstrom Y, Johansson BR, Schroder HD, Hojlund K, Bostrom P (2009) Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int 33(9): 934−940

 

Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS (2012) A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 61(7): 906−921

 

Khor VK, Ahrends R, Lin Y, Shen WJ, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S, Kraemer FB (2014) The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS One 9(8): e105047. https://doi.org/10.1371/journal.pone.0105047

 

Kim SC, Chen Y, Mirza S, Xu Y, Lee J, Liu P, Zhao Y (2006) A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J Proteome Res 5(12): 3446−3452

 

Krahmer N, Farese RV Jr., Walther TC (2013a) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5(7): 973−983

 

Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G, Mann M, Farese RV Jr., Walther TC (2013b) Protein correlation profiles identify lipid droplet proteins with high confidence. Mol Cell Proteomics 12(5): 1115−1126

 

Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RGW (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279(5): 3787−3792

 

Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, Minokoshi Y, Kahn BB, Parker RA, Hotamisligil GS (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1(2): 107−119

 

Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J (2021) PDIA3: structure, functions and its potential role in viral infections. Biomed Pharmacother 143: 112110. https://doi.org/10.1016/j.biopha.2021.112110

 

Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5): 373−378

 

Mensah ET, Blanco AM, Donini A, Unniappan S (2018) Galanin decreases spontaneous resting contractions and potentiates acetyl choline-induced contractions of goldfish gut. Neuropeptides 69: 92−97

 

Misselbeck K, Parolo S, Lorenzini F, Savoca V, Leonardelli L, Bora P, Morine MJ, Mione MC, Domenici E, Priami C (2019) A network-based approach to identify deregulated pathways and drug effects in metabolic syndrome. Nat Commun 10(1): 5215. https://doi.org/10.1038/s41467-019-13208-z

 

Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5): 325−438

 

Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249(3): 541−585

 

Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791(6): 441−447

 
Na H, Zhang P, Chen Y, Zhu X, Liu Y, Liu Y, Xie K, Xu N, Yang F, Yu Y, Cichello S, Mak HY, Wang MC, Zhang H, Liu P (2015) Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochim Biophys Acta 1853(10 Pt A): 2481-2491
 

Nakayama H, Hata K, Matsuoka I, Zang L, Kim Y, Chu D, Juneja LR, Nishimura N, Shimada Y (2020) Anti-obesity natural products tested in juvenile zebrafish obesogenic tests and mouse 3T3-L1 adipogenesis assays. Molecules 25(24): 5840. https://doi.org/10.3390/molecules25245840

 

Nakayama H, Shimada Y, Zang L, Terasawa M, Nishiura K, Matsuda K, Toombs C, Langdon C, Nishimura N (2018) Novel anti-obesity properties of palmaria mollis in zebrafish and mouse models. Nutrients 10(10): 1401. https://doi.org/10.3390/nu10101401

 
Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121(Pt 14): 2415-2422
 
Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12): 2601-2611
 

Park JY, Seong JK, Paik YK (2004) Proteomic analysis of diet-induced hypercholesterolemic mice. Proteomics 4(2): 514−523

 

Pereira HA, Leite Ade L, Charone S, Lobo JG, Cestari TM, Peres-Buzalaf C, Buzalaf MA (2013) Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS One 8(9): e75343. https://doi.org/10.1371/journal.pone.0075343

 

Ribas L, Piferrer F (2014) The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev Aquac 6(4): 209−240

 

Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, Ouberai MM, Thiam AR, Patel S, Saudek V, Siniossoglou S, Savage DB (2016) Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. J Biol Chem 291(13): 6664−6678

 

Saka HA, Thompson JW, Chen YS, Dubois LG, Haas JT, Moseley A, Valdivia RH (2015) Chlamydia trachomatis infection leads to defined alterations to the lipid droplet proteome in epithelial cells. PLoS One 10(4): e0124630. https://doi.org/10.1371/journal.pone.0124630

 

Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M (2006) Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 139(5): 921−930

 

Shi J, Feng H, Lee J, Ning Chen W (2013) Comparative proteomics profile of lipid-cumulating oleaginous yeast: an iTRAQ-coupled 2-D LC-MS/MS analysis. PLoS One 8(12): e85532. https://doi.org/10.1371/journal.pone.0085532

 

Su W, Wang Y, Jia X, Wu W, Li L, Tian X, Li S, Wang C, Xu H, Cao J, Han Q, Xu S, Chen Y, Zhong Y, Zhang X, Liu P, Gustafsson JA, Guan Y (2014) Comparative proteomic study reveals 17beta-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 111(31): 11437−11442

 
Sztalryd C, Brasaemle DL (2017) The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 1862(10 Pt B): 1221-1232
 

Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, Xie M, Gao C, Ye Y, Duan M, Zhou Z (2019) The use of zebrafish (Danio rerio) as biomedical models. Anim Front 9(3): 68−77

 

Thiam AR, Farese RV Jr, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12): 775−786

 

Tian JJ, Zhang JM, Yu EM, Sun JH, Xia Y, Zhang K, Li ZF, Gong WB, Wang GJ, Xie J (2020) Identification and analysis of lipid droplet-related proteome in the adipose tissue of grass carp (Ctenopharyngodon idella) under fed and starved conditions. Comp Biochem Physiol Part D Genomics Proteomics 36: 100710. https://doi.org/10.1016/j.cbd.2020.100710

 

Turro S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A (2006) Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7(9): 1254−1269

 

Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R (2004) Association of stomatin with lipid bodies. J Biol Chem 279(22): 23699−23709

 

Vrablik TL, Petyuk VA, Larson EM, Smith RD, Watts JL (2015) Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim Biophys Acta 1851(10): 1337−1345

 

Walther TC, Farese RV Jr. (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81: 687−714

 

Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92(4): 547−557

 

Westerterp M, Berbee JF, Delsing DJ, Jong MC, Gijbels MJ, Dahlmans VE, Offerman EH, Romijn JA, Havekes LM, Rensen PC (2007) Apolipoprotein C-I binds free fatty acids and reduces their intracellular esterification. J Lipid Res 48(6): 1353−1361

 

Wu BX, Chen Y, Chen Y, Fan J, Rohrer B, Crouch RK, Ma JX (2002) Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE. Invest Ophthalmol Vis Sci 43(11): 3365−3372

 
Xu S, Zhang X, Liu P (2018) Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 1864(5 Pt B): 1968-1983
 

Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, Yu J, Zhang P, Na H, Zhang H, Ma Y, Liu P (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res 53(7): 1245−1253

 

Yu J, Zhang S, Cui L, Wang W, Na H, Zhu X, Li L, Xu G, Yang F, Christian M, Liu P (2015) Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta 1853(5): 918−928

 

Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM, Weller PF (1998) Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol 152(3): 759−769

 

Yu W, Cassara J, Weller PF (2000) Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood 95(3): 1078−1085

 

Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9(4): 914−921

 

Zhang C, Liu P (2017) The lipid droplet: A conserved cellular organelle. Protein Cell 8(11): 796−800

 

Zhang C, Liu P (2019) The new face of the lipid droplet: lipid droplet proteins. Proteomics 19(10): e1700223. https://doi.org/10.1002/pmic.201700223

 

Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P (2011) Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res 10(10): 4757−4768

 

Zhang P, Na H, Liu Z, Zhang S, Xue P, Chen Y, Pu J, Peng G, Huang X, Yang F, Xie Z, Xu T, Xu P, Ou G, Zhang SO, Liu P (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics 11(8): 317−328

 

Zhang S Du Y, Wang Y, Liu P (2010) Lipid droplet—a cellular organelle for lipid metabolism. Acta Biophys Sin 26(2): 97−105

 

Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7(2): 92−104

 

Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700): 1383−1386

Biophysics Reports
Pages 120-133
Cite this article:
Sun Y, Heng J, Liu F, et al. Isolation and proteomic study of fish liver lipid droplets. Biophysics Reports, 2023, 9(3): 120-133. https://doi.org/10.52601/bpr.2023.230004

265

Views

6

Downloads

1

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 26 February 2023
Accepted: 02 June 2023
Published: 03 November 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return