AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes

Xianxin Ye1Minzhu Guan3Yaorong Guo3Xiang Liu1Kunhao Wang3Tongsheng Chen3Shiqun Zhao1( )Liangyi Chen1,2( )
National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Show Author Information

Graphical Abstract

Abstract

Super-resolution microscopy has promoted the development of cell biology, but imaging proteins with low copy numbers in cellular structures remains challenging. The limited number of designated proteins within nuclear pore complexes (NPCs) impedes continuous observation in live cells, although they are often used as a standard for evaluating various SR methods. To address this issue, we tagged POM121 with Halo-SiR and imaged it using structured illumination microscopy with sparse deconvolution (Sparse-SIM). Remarkably, POM121-SiR exhibited more than six-fold fluorescence intensity and four-fold enhanced contrast compared to the same protein labeled with tandem-linked mCherry, while showing negligible photo-bleaching during SR imaging for 200 frames. Using this technique, we discovered various types of NPCs, including ring-like and cluster-like structures, and observed dynamic remodeling along with the sequential appearance of different Nup compositions. Overall, Halo-SiR with Sparse-SIM is a potent tool for extended SR imaging of dynamic structures of NPCs in live cells, and it may also help visualize proteins with limited numbers in general.

Electronic Supplementary Material

Download File(s)
Supplementary materials.zip (2 MB)

References

 

Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turonova B, Karius K, Bormel M, Zhang X, Muller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M (2020) In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586(7831): 796−800

 

Bottanelli F, Kromann EB, Allgeyer ES, Erdmann RS, Wood Baguley S, Sirinakis G, Schepartz A, Baddeley D, Toomre DK, Rothman JE, Bewersdorf J (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7: 10778. https://doi.org/10.1038/ncomms10778

 

Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andres-Pons A, Glavy JS, Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6): 1233−1243

 

Chou YY, Upadhyayula S, Houser J, He K, Skillern W, Scanavachi G, Dang S, Sanyal A, Ohashi KG, Di Caprio G, Kreutzberger AJB, Vadakkan TJ, Kirchhausen T (2021) Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell 56(12): 1786−1803

 

Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J, Henriques R (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15(4): 263−266

 

Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154(1): 71−84

 

Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12): 1027−1036

 

Doucet CM, Talamas JA, Hetzer MW (2010) Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141(6): 1030−1041

 

Dultz E, Ellenberg J (2010) Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J Cell Biol 191(1): 15−22

 

Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut Gnl, Sironi L, Ellenberg J (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol 180(5): 857−865

 

Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6: 7532. https://doi.org/10.1038/ncomms8532

 

Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12): 929−943

 
Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106 ( Pt 1): 261-274
 

Gottfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105(1): L01−03

 

Gu L, Ji W (2021) Recent progress on single-molecule localization microscopy. Biophysics Reports 7(5): 365−376

 

Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21(6): 766−776

 

Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, Kurokawa H, Deguchi R, Endo K, Haga K, Takai-Todaka R, Inaura S, Matsumura Y, Hama H, Okada Y, Fujiwara T, Morimoto T, Katayama K, Miyawaki A (2022) A highly photostable and bright green fluorescent protein. Nat Biotechnol 40(7): 1132−1142

 

Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6): 373−382

 
Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125(Pt 3): 570-575
 

Lü Q, Zhang C, Westlake Christopher J (2021) Live-cell fluorescence imaging of ciliary dynamics. Biophys Rep 7(2): 101−110

 

Nofrini V, Di Giacomo D, Mecucci C (2016) Nucleoporin genes in human diseases. Eur J Hum Genet 24(10): 1388−1395

 

Otsuka S, Ellenberg J (2018) Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine. FEBS Lett 592(4): 475−488

 

Otsuka S, Tempkin JOB, Zhang W, Politi AZ, Rybina A, Hossain MJ, Kueblbeck M, Callegari A, Koch B, Morero NR, Sali A, Ellenberg J (2023) A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature 613(7944): 575−581

 

Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28: 46−53

 

Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11): 1114−1121

 

Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J (2018) Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 174(5): 1200−1215

 

Sabinina VJ, Hossain MJ, Hériché JK, Hoess P, Nijmeijer B, Mosalaganti S, Kueblbeck M, Callegari A, Szymborska A, Beck M, Ries J, Ellenberg J (2021) Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. Mol Biol Cell 32(17): 1523−1533

 

Sakuma S, D'Angelo MA (2017) The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 68: 72−84

 

Sellés J, Penrad-Mobayed M, Guillaume C, Fuger A, Auvray L, Faklaris O, Montel F (2017) Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 7(1): 14732. https://doi.org/10.1038/s41598-017-15433-2

 

Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7): 490−501

 

Sun J, Shi Y, Yildirim E (2019) The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure and Gene Regulation. Trends Genet 35(8): 579−588

 

Thevathasan JV, Kahnwald M, Cieslinski K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y, Wu YL, Mund M, Matti U, Pereira PM, Henriques R, Nijmeijer B, Kueblbeck M, Sabinina VJ, Ellenberg J, Ries J (2019) Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods 16(10): 1045−1053

 

Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y (2014) A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6(8): 681−689

 

Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y (2015) A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 64(4): 263−277

 
Whytock S, Moir RD, Stewart M (1990) Selective digestion of nuclear envelopes from Xenopus oocyte germinal vesicles: possible structural role for the nuclear lamina. J Cell Sci 97 ( Pt 3): 571-580
 

Yang T, Luo Y, Ji W, Yang G (2021) Advancing biological super-resolution microscopy through deep learning: a brief review. Biophys Rep 7(4): 253−266

 

Zhang H, Shao S, Sun Y (2022) Characterization of liquid–liquid phase separation using super-resolution and single-molecule imaging. Biophys Rep 8(1): 2−13

 

Zhao W, Zhao S, Li L, Huang X, Xing S, Zhang Y, Qiu G, Han Z, Shang Y, Sun DE, Shan C, Wu R, Gu L, Zhang S, Chen R, Xiao J, Mo Y, Wang J, Ji W, Chen X, Ding B, Liu Y, Mao H, Song BL, Tan J, Liu J, Li H, Chen L (2022) Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40(4): 606−617

Biophysics Reports
Pages 206-214
Cite this article:
Ye X, Guan M, Guo Y, et al. Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes. Biophysics Reports, 2023, 9(4): 206-214. https://doi.org/10.52601/bpr.2023.230010

177

Views

4

Downloads

1

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 20 July 2023
Accepted: 21 November 2023
Published: 31 August 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return