This study investigated the effects of different combinations of sous-vide cooking temperature (11, 14 and 17 h) and time (57, 60 and 63 ℃ ) on the eating quality of beef Semimembranous muscle in terms of pH value, internal color of cooked meat, cooking loss, tenderness, and sensory scores. The results showed that as cooking time and cooking temperature increased, the pH value, shear force, cooking loss, L* value, and H* value of bovine Semimembranous muscle all showed an increasing trend, while the a*, b*, C*, and overall sensory score significantly decreased. The cooking loss increased from 28.98% to 33.06% over 11 to 17 hours, and from 27.2% to 36.5% over 57 to 63 ℃ ; the shear force increased from 40.14 to 61.08 N over 57 to 63 ℃ , indicating that as the cooking strength increased, both the water-holding capacity and tenderness decreased. At 57 ℃ and 11 hours, cooked beef had the lowest shear force of 42.58 N, which meets the demand of Chinese consumers for “tender meat”, and the highest scores for overall acceptability and internal color. Therefore, cooking at 57 ℃ for 11 hours can effectively improve the tenderness and water-holding capacity of beef Semimembranous muscles while avoiding some problems such as the reddish color and bland flavor of cooked meat and imparting it with better sensory quality and higher yield.
BALDWIN D E. Sous vide cooking: a review[J]. International Journal of Gastronomy and Food Science, 2012, 1(1): 15-30. DOI:10.1016/j.ijgfs.2011.11.002.
NAQVI Z B, CAMPBELL M A, LATIF S, et al. Improving tenderness and quality of M. biceps femoris from older cows through concentrate feeding, zingibain protease and sous vide cooking[J]. Meat Science, 2021, 180(3): 636-543. DOI:10.1016/j.meatsci.2021.108563.
YIN Y T, ZHOU L, PEREIRA J, et al. Insights into digestibility and peptide profiling of beef muscle proteins with different cooking methods[J]. Journal of Agricultural and Food Chemistry, 2020, 68(48): 14243-14251. DOI:10.1021/acs.jafc.0c04054.
THATHSARANI A P K, ALAHAKOON A U, LIYANAGE R. Current status and future trends of sous vide processing in meat industry: a review[J]. Trends in Food Science and Technology, 2022, 23: 543-552. DOI:10.1016/j.foohum.2023.06.028.
ISMAIL I, HWANG Y H, JOO S T, et al. Effect of different temperature and time combinations on quality characteristics of sousvide cooked goat Gluteus medius and Biceps femoris[J]. Food and Bioprocess Technology, 2019, 12(6): 235-242. DOI:10.1007/s11947-019-02272-4.
UTTARO B. Efficacy of multi-stage sous-vide cooking on tenderness of low value beef muscles[J]. Meat Science, 2019, 149(2): 40-46. DOI:10.1016/j.meatsci.2018.11.008.
XU C Y, WANG Y, PAN D, et al. Effect of cooking temperature on texture and flavour binding of braised sauce porcine skin[J]. International Journal of Food Science and Technology, 2021, 56(4): 1690-1702. DOI:10.1111/ijfs.14791.
PALKA K. The influence of post-mortem ageing and roasting on the microstructure, texture and collagen solubility of bovine Semitendinosus muscle[J]. Meat Science, 2003, 64(2): 191-198. DOI:10.1016/S0309-1740(02)00179-1.
STEFANIA K, KAREN L, ROHINI D, et al. Effect of different atmospheric and subatmospheric cooking techniques on physical and chemical qualitative properties of pork loin[J]. Meat Science, 2023, 206(4): 136-145. DOI:10.1016/j.meatsci.2023.109338
DOMINGUEZ E, ERTBJERG P. Low-temperature long-time cooking of meat: eating quality and underlying mechanisms[J]. Meat Science, 2018, 143: 104-113. DOI:10.1016/j.meatsci.2018.04.032.
THATHSARANI A, ALAHAKOON U, LIYANAGE R. Current status and future trends of sous vide processing in meat industry: a review[J]. Trends in Food Science and Technology, 2022, 129: 352-363. DOI:10.1016/j.tifs.2022.10.009.
ANNE D, THIERRY A, KEISUKE S, et al. Transformation of highly marbled meats under various cooking processes[J]. Meat Science, 2022, 165(4): 189-197. DOI:10.1016/j.meatsci.2022.108810.
CHIAN F M, KAUR L, OEY I, et al. Effects of pulsed electric field processing and sous vide cooking on muscle structure and in vitro protein digestibility of beef brisket[J]. Foods, 2021, 10: 512. DOI:10.3390/foods10030512.
YANG X Y, ZHANG Y M, ZHU L X, et al. Effect of packaging atmospheres on storage quality characteristics of heavily marbled beef Longissimus steaks[J]. Meat Science, 2016, 117: 50-56. DOI:10.1016/j.meatsci.2016.02.030.
LIU Y Q, MAO Y W, ZHANG Y M, et al. Pre-rigor temperature control of Chinese yellow cattle carcasses to 12–18 ℃ during chilling improves beef tenderness[J]. Meat Science, 2014, 100: 139-144. DOI:10.1016/j.meatsci.2014.09.006.
HOU X, LIANG R R, MAO Y W, et al. Effect of suspension method and aging time on meat quality of Chinese fattened cattle M. longissimus dorsi[J]. Meat Science, 2014, 96(1): 640-645. DOI:10.1016/j.meatsci.2013.08.026.
GAMBARO A, PANIZZOLO A P, HODOS N, et al. Influence of temperature and time in sous-vide cooking on physicochemical and sensory parameters of beef shank cuts[J]. International Journal of Gastronomy and Food Science, 2023, 32(7): 132-141. DOI:10.1016/j.ijgfs.2023.100701.
BLANKA M, KATERINA B, FRANTISEK J, et al. Cooking loss in retail beef cuts: the effect of muscle type, sex, ageing, pH, salt and cooking method[J]. Meat Science, 2021, 171: 247-254. DOI:10.1016/j.meatsci.2021,108270.
ABDEL N H, SALLAM K I, ZAKI E, et al. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes[J]. Meat Science, 2021, 181: 108-116. DOI:10.1016/j.meatsci.2021.108612.
NAIR M, SUMAN S, LI S T, et al. Proteome basis for intramuscular variation in color stability of beef Semimembranosus[J]. Meat Science, 2016, 113: 9-16. DOI:10.1016/j.meatsci.2015.11.003.
PATHAK K V, CHIU T L, AMIN E, et al. Methemoglobin formation and characterization of hemoglobin adducts of carcinogenic aromatic amines and heterocyclic aromatic amines[J]. Chemical Research in Toxicology, 2016, 29(3): 255-269. DOI:10.1021/acs.chemrestox.5b00418.
ROLDAN M, ANTEQUERA T, MARTIN A. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins[J]. Meat Science, 2013, 93(3): 572-578. DOI:10.1016/j.meatsci.2012.11.014.
NAQVI Z B, THOMSON P C, HA M. Effect of sous-vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals[J]. Meat Science, 2021, 175(1): 427-435. DOI:10.1016/j.meatsci.2019.107882.
DOMINGUEZ H, ELISA, SALAS E, et al. Low-temperature long-time cooking of meat: eating quality and underlying mechanisms[J]. Meat Science, 2018, 143: 104-113. DOI:10.1016/j.meatsci.2018.04.032.
SUMAN S P, RAMANTHAN R, NAIR M N. Advances in fresh meat color stability[J]. New Aspects of Meat Quality, 2022, 56(2): 139-161. DOI:10.1016/B978-0-323-85879-3.00030-1.
CHRISTENSEN L, ERTBJERG P, AASLYNG M, et al. Effect of prolonged heat treatment from 48 ℃ to 63 ℃ on toughness, cooking loss and color of pork[J]. Meat Science, 2011, 88(2): 280-285. DOI:10.1016/j.meatsci.2010.12.035.
GARCÍA P, ANDRÉS A, MARTÍNEZ J, et al. Effect of cooking method on mechanical properties, color and structure of beef muscle[J]. Journal of Food Engineering, 2007, 80: 813-821. DOI:10.1016/j.jfoodeng.2006.07.010.
RUIZ J, CALVARRO J, SÁNCHEZ J, et al. Science and technology for new culinary techniques[J]. Journal of Culinary Science and Technology, 2013, 11: 66-79. DOI:10.1016/j.tsc.2022.101133.
SCHOREPHER M, MEYER M. DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities[J]. International Journal of Biological Macromolecules, 2017, 103(6): 78-86. DOI:10.1016/j.ijbiomac.2017.04.124.
SÁNCHEZ J, GÁZQUEZ A, RUIZ C J. Physicochemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time[J]. Meat Science, 2012, 90: 828-835. DOI:10.1016/j.meatsci.2011.11.024.
CHAMPION A C, PURSLOW P, DUANCE. Dimensional changes of isolated endomysia on heating[J]. Meat Science, 1988, 24: 261-273. DOI:10.1016/0309-1740(88)90039-3.
DESTEFANIS G, BRUGIAPAGLIA A, BARGE M T. Relationship between beef consumer tenderness and Warner Bratzler shear force[J]. Meat Science, 2008, 78(3): 153-156. DOI:10.1016/j.meatsci.2007.05.031.
LIANG R R, ZHU H, MAO Y W, et al. Tenderness and sensory attributes of the Longissimus lumborum muscles with different quality grades from Chinese fattened yellow crossbred steers[J]. Meat Science, 2015, 112(10): 52-57. DOI:10.1016/j.meatsci.2015.10.004.
YANG X Y, ZHANG Y, LUO X, et al. Influence of oxygen concentration on the fresh and internal cooked color of modified atmosphere packaged dark-cutting beef stored under chilled and superchilled conditions[J]. Meat Science, 2022, 188: 764-773. DOI:10.1016/j.meatsci.2022.108773.
RAMANATHAN. Consumer practices and risk factors that predispose to premature browning in cooked ground beef[J]. Meat and Muscle Biology, 2019, 3(1): 526-531. DOI:10.1016/B978-0-323-85408-5.00023-6.
RUIZ C J, ROLDAN M, REFOLIO F, et al. Sous-vide cooking of meat: a maillarized approach[J]. International Journal of Gastronomy and Food Science, 2019, 16: 100-138. DOI:10.1016/j.ijgfs.2019.100138.
MAFI G, NAIR M, HUNT M, et al. Recent updates in meat color research: integrating traditional and high-throughput approaches[J]. Meat and Muscle Biology, 2020, 4(2): 95-98. DOI:10.22175/mmb.9598.
ABDELNAEEM H, SALLAM K I, ZAKI H M, et al. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes[J]. Meat Science, 2021, 128(2): 604-612. DOI:10.1016/j.meatsci.2021.108612.
SUMAN S P, JOSEPH P. Chemical and physical characteristic of meat, color and pigment[J]. Encyclopedia of Meat Sciences, 2014, 1(7): 244-251. DOI:10.1016/B978-0-12-384731-7.00247-6.
AASLYNG M D, OKSAMA M, OLSEN E V, et al. The impact of sensory quality of pork on consumer preference[J]. Meat Science, 2007, 76(1): 61-73. DOI:10.1016/j.meatsci.2006.10.014.