PDF (1.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Intestinal Organoids: A New Tool for Infection Assessment of Foodborne Pathogens from Meat and Meat Products

Xu WANG1 Huanchen LIU2Liming WANG1Huixin WANG1Yixiang WANG1Yi WANG3 ()Yan ZHANG1()
Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Hebei Food Inspection and Research Institute, Shijiazhuang 050227, China
National Center of Standards Evaluation, State Administration for Market Regulation, Beijing 100026; China
Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

Meat and meat products are an essential part of the human diet. Being nutritious, they are easily contaminated by foodborne pathogens, which causes serious damage to human health. Therefore, the prevention and control of foodborne pathogen contamination in meat and meat products is of great importance for food safety. In order to deeply understand the relationship between foodborne pathogens and epithelial cells in the whole infection process, it is a prerequisite to establish an effective intestinal evaluation model. Accordingly, this paper summarizes the infection status of common foodborne pathogens in meat and meat products, and discusses the in vivo and in vitro models currently used to assess the infection of foodborne pathogens. Among them, intestinal organoids, a new model to evaluate the infection mechanism of foodborne pathogens, have great potential in the research of the pathogenic mechanism, cell and tissue tropism. Therefore, this paper focuses on the current status of the application of intestinal organoid models in research on the infection mechanism of foodborne pathogens, and discusses the characteristics and problems of the current intestinal organoid models as well as future development directions.

CLC number: TS251.9 Document code: A Article ID: 1001-8123(2024)01-0075-07

References

[1]

BOHRER B M. Review: nutrient density and nutritional value of meat products and non-meat foods high in protein[J]. Trends Food Science and Technology, 2017, 65: 103-112. DOI:10.1016/j.tifs.2017.04.016.

[2]

European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union one health 2021 zoonoses report[J]. EFSA Journal, 2022, 20(12): e07666. DOI:10.2903/j.efsa.2022.7666.

[3]

KARBOWIAK M, SZYMANSKI P, ZIELINSKA D. Synergistic effect of combination of various microbial hurdles in the biopreservation of meat and meat products[J]. Foods, 2023, 12(7): 1430. DOI:10.3390/foods12071430.

[4]

SMITH A M, TAU N P, SMOUSE S L, et al. Outbreak of listeria monocytogenes in South Africa, 2017-2018: laboratory activities and experiences associated with whole-genome sequencing analysis of isolates[J]. Foodborne Pathogens Disease, 2019, 16(7): 524-530. DOI:10.1089/fpd.2018.2586.

[5]

WARMATE D, ONARINDE B A. Food safety incidents in the red meat industry: a review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021[J]. International Journal of Food Microbiology, 2023, 398: 110240. DOI:10.1016/j.ijfoodmicro.2023.110240.

[13]

ABEBE E, GUGSA G, AHMED M. Review on major food-borne zoonotic bacterial pathogens[J]. Journal of Tropical Medicine, 2020, 2020: 4674235. DOI:10.1155/2020/4674235.

[14]

ANDREOLETTI O, BUDKA H, BUNCIC S, et al. Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU EFSA panel on biological hazards (BIOHAZ)[J]. EFSA Journal, 2010, 8(1): 1437. DOI:10.2903/j.efsa.2010.1437.

[15]

BLACK R E, LEVINE M M, CLEMENTS M L, et al. Experimental Campylobacter jejuni infection in humans[J]. The Journal of Infectious Disease, 1988, 157(3): 472-479. DOI:10.1093/infdis/157.3.472.

[17]

ODYNIEC M, BANCERZ-KISIEL A. Assessment of the role of free-living and farmed fallow deer (Dama dama) as a potential source of human infection with multiple-drug-resistant strains of Yersinia enterocolitica and Yersinia pseudotuberculosis[J]. Pathogens, 2022, 11(11): 1266. DOI:10.3390/pathogens11111266.

[18]

VERBIKOVA V, BORILOVA G, BABAK V, et al. Prevalence, characterization and antimicrobial susceptibility of Yersinia enterocolitica and other Yersinia species found in fruits and vegetables from the European Union[J]. Food Control, 2018, 85: 161-167. DOI:10.1016/j.foodcont.2017.08.038.

[22]

MAURY M M, BRACQ-DIEYE H, HUANG L, et al. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products[J]. Nature Communications, 2019, 10(1): 2488. DOI:10.1038/s41467-019-11625-8

[24]

WANG J, ZHANG H F, YAN J, et al. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis[J]. Journal of Maternal-Fetal and Neonatal Medicine, 2020, 35(5): 861-870. DOI:10.1080/14767058.2020.1732342.

[26]

WU L J, LUO Y, SHI G L, et al. Prevalence, clinical characteristics and changes of antibiotic resistance in children with nontyphoidal Salmonella infections from 2009-2018 in Chongqing, China[J]. Infection and Drug Resistance, 2021, 14: 1403-1413. DOI:10.2147/IDR.S301318.

[28]

AZIMI T, ZAMIRNASTA M, SANI M A, et al. Molecular mechanisms of Salmonella effector proteins: a comprehensive review[J]. Infection and Drug Resistance, 2020, 13: 11-26. DOI:10.2147/IDR.S230604.

[29]

LEE J, KANG D. Development of an improved selective medium for the detection of Shigella spp.[J]. LWT-Food Science and Technology, 2016, 65: 311-317. DOI:10.1016/j.lwt.2015.08.028.

[30]

MOKHTARI W, NSAIBIA S, MAJOURI D, et al. Detection and characterization of Shigella species isolated from food and human stool samples in Nabeul, Tunisia, by molecular methods and culture techniques[J]. Journal of Applied Microbiology, 2012, 113(1): 209-222. DOI:10.1111/j.1365-2672.2012.05324.x.

[32]

DONG N, LI X R, XUE C Y, et al. Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium[J]. International Immunopharmacology, 2019, 74: 105681. DOI:10.1016/j.intimp.2019.105681.

[34]

TAYLOR F, TESH V, DEBAULT L, et al. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1[J]. The American Journal of Pathology, 1999, 154(4): 1285-1299. DOI:10.1016/S0002-9440(10)65380-1.

[35]

BOLES J W, PITT M, LE CLAIRE R D, et al. Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity[J]. Clinical Immunology, 2003, 108(1): 51-59. DOI:10.1016/S1521-6616(03)00066-4.

[36]

HEIMESAAT M M, ALUTIS M E, GRUNDMANN U, et al. The role of IL-23, IL-22 and IL-18 in Campylobacter jejuni infection of conventional infant mice[J]. European Journal of Microbiology and Immunology, 2016, 6(2): 124-136. DOI:10.1556/1886.2016.00008.

[37]

LECUIT M, POURNIN S V, LEFORT J, et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier[J]. Science, 2001, 292: 1722-1725. DOI:10.1126/science.1059852.

[38]

TAKAHASHI A, IIDA T, NAIM R, et al. Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation[J]. Journal of Medical Microbiology, 2001, 50(10): 870-878. DOI:10.1099/0022-1317-50-10-870.

[39]

GERARDI G, RIVERO-PÉREZ M D, CAVIA-SAIZ M, et al. Wine pomace product inhibit Listeria monocytogenes invasion of intestinal cell lines Caco-2 and SW-480[J]. Foods, 2021, 10(7): 1485. DOI:10.3390/foods10071485.

[40]

BARRILA J, YANG J, CRABBÉ A, et al. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns[J]. NPJ Microgravity, 2017, 3: 10. DOI:10.1038/s41526-017-0011-2

[41]

SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI:10.1038/nature07935.

[42]

GEISER P, MARTINO M L D, VENTAYOL P S, et al. Salmonella enterica serovar typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids[J]. mBio, 2021, 12(1): e02684-20. DOI:10.1128/mBio.02684-20.

[43]

WILSON S S, TOCCHI A, HOLLY M K, et al. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions[J]. Mucosal Immunology, 2015, 8(2): 352-361. DOI:10.1038/mi.2014.72.

[44]

IN J, FOUKLE-ABEL J, ZACHOS N C, et al. Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids[J]. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2(1): 48-62. DOI:10.1016/j.jcmgh.2015.10.001.

[45]

KOESTLER B J, WARD C M, FISHER C R, et al. Human intestinal enteroids as a model system of Shigella pathogenesis[J]. Infection and Immunity, 2019, 87: e00733-18. DOI:10.1128/IAI.00733-18.

[46]

KARVE S S, PRADHAN S, WARD D V, et al. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli[J]. PLoS ONE, 2017, 12: e0178966. DOI:10.1371/journal.pone.0178966.

[47]

HOLLY M K, HAN X, ZHAO E J, et al. Salmonella enterica infection of murine and human enteroid-derived monolayers elicits differential activation of epithelium-intrinsic inflammasomes[J]. Infection and Immunity, 2020, 88(7): e00017-20. DOI:10.1128/IAI.00017-20.

[48]

ARTEGIANI B, HENDRIKS D, BEUMER J, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J]. Nature Cell Biology, 2020, 22(3): 321-331. DOI:10.1038/s41556-020-0472-5.

[49]

ABERLE M R, BURKHART R A, TIRIAC H, et al. Patientderived organoid models help define personalized management of gastrointestinal cancer[J]. British Journal of Surgery, 2018, 105(2): E48-E60. DOI:10.1002/bjs.10726.

[50]

CROWLEY S M, HAN X, ALLAIRE J M, et al. Intestinal restriction of Salmonella typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasome[J]. PLoS Pathogens, 2020, 16(4): e1008498. DOI:10.1371/journal.ppat.1008498.

[51]

NOEL G, BAETZ N W, STAAB J F, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions[J]. Scientific Reports, 2017, 7: 45270. DOI:10.1038/srep46790.

[52]

CO J Y, MARGALEF-CATALÀ M, LI X, et al. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions[J]. Cell Reports, 2019, 26: 2509-2520. DOI:10.1016/j.celrep.2019.01.108.

[53]

GRASSART A, MALARDÉ V, GOBBA S, et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection[J]. Cell Host Microbe, 2019, 26(3): 435-444. DOI:10.1016/j.chom.2019.08.007.

[54]

TOVAGLIERI A, SONTHEIMER-PHELPS A, GEIRNAERT A, et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites[J]. Microbiome, 2019, 7(1): 43. DOI:10.1186/s40168-019-0650-5.

[55]

KIM H J, LI H, COLLINS J, et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip[J]. Proceedings of the National Academy of Sciences, 2015, 113(1): E7-E15. DOI:10.1073/pnas.1522193112.

Meat Research
Pages 75-81
Cite this article:
WANG X, LIU H, WANG L, et al. Intestinal Organoids: A New Tool for Infection Assessment of Foodborne Pathogens from Meat and Meat Products. Meat Research, 2024, 38(1): 75-81. https://doi.org/10.7506/rlyj1001-8123-20240123-032
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return