The effects of mulberry polysaccharide, chitosan, and straw mushroom polysaccharide on the formation of free and bound heterocyclic aromatic amines (HAAs), physicochemical and textural quality attributes in dried minced pork slices (DMS) were investigated. The results showed that 9 free HAAs and 6 bound HAAs were detected in DMS. Addition of mulberry polysaccharide or chitosan could significantly inhibit the formation of 5 free HAAs, 9H-pyrido[3,4-b]indole (Norharman), 1-methyl-9H-pyrido[3,4-b]indole (Harman), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ) and 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx); and 5 bound HAAs, Norharman, Harman, Trp-P-1, MeIQx and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (P<0.05), mulberry polysaccharide being more effective. Inhibition of protein oxidation could be the most important pathway for polysaccharides to reduce HAAs in DMS, followed by lipid oxidation and Maillard reaction. Mulberry polysaccharide and chitosan could inhibit protein oxidation, lipid oxidation and Maillard reaction and scavenge 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical, thus inhibiting the generation of free and bound HAAs during thermal processing of DMS. Neither the color nor texture of DMS was significantly affected by mulberry polysaccharide. These findings implied that mulberry polysaccharide has the potential to improve the quality and safety of DMS, which will promote the high-quality development of the traditional meat industry.
BYLSMA L C, ALEXANDER D D. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer[J]. Nutrition Journal, 2015, 14(1): 125-143. DOI:10.1186/s12937-015-0111-3.
SZTERK A. Chemical state of heterocyclic aromatic amines in grilled beef: evaluation by in vitro digestion model and comparison of alkaline hydrolysis and organic solvent for extraction[J]. Food and Chemical Toxicology, 2013, 62: 653-660. DOI:10.1016/j.fct.2013.09.036.
ZAMORA R, HIDALGO F J. Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products[J]. Food Chemistry, 2020, 313: 126-128. DOI:10.1016/j.foodchem.2019.126128.
VITAGLIONE P, FOGLIANO V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food[J]. Journal of Chromatography B, 2004, 802(1): 189-199. DOI:10.1016/j.jchromb.2003.09.029.
XU Y, HUANG T R, HUANG Y Q, et al. Effect of mulberry leaf(Morus alba L.)extract on the quality and formation of heterocyclic amines in braised muscovy duck[J]. Food Control, 2024, 156: 110137. DOI:10.1016/j.foodcont.2023.110137.
FERNANDES P A R, COIMBRA M A. The antioxidant activity of polysaccharides: a structure-function relationship overview[J]. Carbohydrate Polymers, 2023, 314: 120965. DOI:10.1016/j.carbpol.2023.120965.
ZHANG N N, ZHAO Y L, FAN D M, et al. Inhibitory effects of some hydrocolloids on the formation of heterocyclic amines in roast beef[J]. Food Hydrocolloids, 2020, 108: 106073. DOI:10.1016/j.foodhyd.2020.106073.
ZHANG N N, ZHOU Q, ZHAO Y L, et al. Chitosan and flavonoid glycosides are promising combination partners for enhanced inhibition of heterocyclic amine formation in roast beef[J]. Food Chemistry, 2022, 375: 131859. DOI:10.1016/j.foodchem.2021.131859.
AI J, BAO B, BATTINO M, et al. Recent advances on bioactive polysaccharides from mulberry[J]. Food and Function, 2021, 12(12): 5219-5235. DOI:10.1039/D1FO00682G.
SANGTHONG S, PINTATHONG P, PONGSUA P, et al. Polysaccharides from Volvariella volvacea mushroom: extraction, biological activities and cosmetic efficacy[J]. Journal of Fungi, 2022, 8(6): 572. DOI:10.3390/jof8060572.
LI X F, YANG Z L, DENG J Y, et al. Effect of quercetin and oil water separation system on formation of β-carboline heterocyclic amines during frying process of braised chicken drumsticks[J]. Current Research in Food Science, 2023, 6: 100406. DOI:10.1016/j.crfs.2022.100406.
GENG J T, TAKAHASHI K, KAIDO T, et al. Relationship among pH, generation of free amino acids, and Maillard browning of dried Japanese common squid Todarodes pacificus meat[J]. Food Chemistry, 2019, 283: 324-330. DOI:10.1016/j.foodchem.2019.01.056.
CHENG J R, LIU X M, ZHANG Y S, et al. Protective effects of Momordica grosvenori extract against lipid and protein oxidation-induced damage in dried minced pork slices[J]. Meat Science, 2017, 133: 26-35. DOI:10.1016/j.meatsci.2017.04.238.
ZHOU S Y, HUANG G L, CHEN G Y. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food Chemistry, 2021, 361: 130089. DOI:10.1016/j.foodchem.2021.130089.
ZHANG L, XIA X F, SUN F D, et al. Inhibitory effects of hydrocolloids on the formation of heterocyclic aromatic amines in smoked chicken drumsticks and the underlying mechanism[J]. Food Hydrocolloids, 2022, 133: 107940. DOI:10.1016/j.foodhyd.2022.107940.
XU Y, CHENG Y Q, ZHU Z S, et al. Inhibitory effect of mulberry leaf (Morus alba L.) extract on the formation of free and bound heterocyclic amines in pan-fried muscovy duck (Cairina moschata) patties[J]. Food Control, 2023, 144: 109359. DOI:10.1016/j.foodcont.2022.109359.
KLOMKLAO S, BENJAKUL S, VISESSANGUAN W, et al. Effects of the addition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction and characteristics of fish sauce made from sardine (Sardinella gibbosa) [J]. Food Chemistry, 2006, 98(3): 440-452. DOI:10.1016/j.foodchem.2005.06.013.
EDNA H P T, LIANG Z J, ZHANG P Z, et al. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products[J]. Food Control, 2024, 158: 110236. DOI:10.1016/j.foodcont.2023.110236.
MOUSA R M A. Simultaneous inhibition of acrylamide and oil uptake in deep fat fried potato strips using gum Arabicbased coating incorporated with antioxidants extracted from spices[J]. Food Hydrocolloids, 2018, 83: 265-274. DOI:10.1016/j.foodhyd.2018.05.007.
XU L, ZHU M J, LIU X M, et al. Inhibitory effect of mulberry(Morus alba)polyphenol on the lipid and protein oxidation of dried minced pork slices during heat processing and storage[J]. LWT-Food Science and Technology, 2018, 91: 222-228. DOI:10.1016/j.lwt.2018.01.040.
LIU F, DAI R T, ZHU J Y, et al. Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and α-tocopherol[J]. Journal of Food Engineering, 2010, 98(2): 170-177. DOI:10.1016/j.jfoodeng.2009.12.023.
YAN Y, ZHOU Y Q, HUANG J J, et al. Influence of soybean isolate on the formation of heterocyclic aromatic amines in roasted pork and its possible mechanism[J]. Food Chemistry, 2022, 369: 130978. DOI:10.1016/j.foodchem.2021.130978.
LU F, KUHNLE G K, CHENG Q F. Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties[J]. Food Control, 2017, 81: 113-125. DOI:10.1016/j.foodcont.2017.05.043.
TURGUT S S, IŞIKÇI F, SOYER A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage[J]. Meat Science, 2017, 129: 111-119. DOI:10.1016/j.meatsci.2017.02.019.
LI F F, ZHONG Q, KONG B H, et al. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage[J]. Food Research International, 2020, 133: 109142. DOI:10.1016/j.foodres.2020.109142.
ZHAO C Q, SHU L, LU Z Y, et al. Optimization of pork jerky fermentation with Lactobacillus bulgaricus[J]. Journal of Food Safety, 2018, 38(1): e12406. DOI:10.1111/jfs.12406.
JEONG K, O H, SHIN S Y, et al. Effects of sous-vide method at different temperatures, times and vacuum degrees on the quality, structural, and microbiological properties of pork ham[J]. Meat Science, 2018, 143: 1-7. DOI:10.1016/j.meatsci.2018.04.010.