PDF (3.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effect of Different pH on the Structure and Thermal Stability of Myoglobin

Meijie YAO1 Jiajing QI1Xiaoyin YANG1Yanwei MAO1Baochen XU1Jiangang HAO2Yue GU3Yimin ZHANG1 ()Rongrong LIANG1 ()
College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271000, China
National Beef Cattle Industrial Technology System, Wulagai Comprehensive Experimental Station, Wulagai 026321, China
National Beef Cattle Industrial Technology System, Baicheng Comprehensive Experimental Station, Baicheng 137314, China
Show Author Information

Abstract

In order to explore the effect of pH on the structure and thermal stability of myoglobin, the molecular structure and surface hydrophobicity of myoglobin at normal pH (5.6) and high pH (6.4) under refrigerated (4 ℃) and heating (72 ℃) conditions as well as its thermal denaturation degree were characterized by various spectroscopic techniques. The results showed that pH had no significant effect on the conformation of myoglobin at 4 ℃. However, the endogenous fluorescence intensity, protein surface hydrophobicity and thermal denaturation of myoglobin at 72 ℃ were significantly higher at pH 5.6 than at pH 6.4. The tertiary structure of myoglobin was more severely destroyed at pH 5.6 than pH 6.4, resulting in reduced thermal stability. Therefore, environmental pH can affect the thermal stability of myoglobin by altering its structural stability. High pH can increase the thermal stability of myoglobin, which is an important cause for the persistent pink color of dark, firm, dry (DFD) beef during cooking.

CLC number: TS251.1 Document code: A Article ID: 1001-8123(2024)06-0001-08

References

[1]

HUNT M, SØRHEIM O, SLINDE E. Color and heat denaturation of myoglobin forms in ground beef[J]. Journal of Food Science, 1999, 64(5): 847-851. DOI:10.1111/j.1365-2621.1999.tb15925.x.

[2]

YANG X Y, ZHANG Y, LUO X, et al. Influence of oxygen concentration on the fresh and internal cooked color of modified atmosphere packaged dark-cutting beef stored under chilled and superchilled conditions[J]. Meat Science, 2022, 188: 108773. DOI:10.1016/j.meatsci.2022.108773.

[3]

BAO Y L, PUOLANNE E, ERTBJERG P. Effect of oxygen concentration in modified atmosphere packaging on color and texture of beef patties cooked to different temperatures[J]. Meat Science, 2016, 121: 189-195. DOI:10.1016/j.meatsci.2016.06.014.

[4]

KIRKPATRICK L, GÓMEZ J, BELINE M, et al. Muscle of dark and normal beef differs metabolically[J]. Meat Science, 2023, 206: 109344. DOI:10.1016/j.meatsci.2023.109344.

[6]
TOMICKI P. Thermal stability and color change of myoglobin in model systems[D]. Guelph: University of Guelph, 1997.
[7]

BREWER M S, NOVAKOFSKI J. Cooking rate, pH and final endpoint temperature effects on color and cook loss of a lean ground beef model system[J]. Meat Science, 1999, 52(4): 443-451. DOI:10.1016/S0309-1740(99)00028-5.

[8]

REESMAN C, SULLIVAN G, DANAO M G, et al. Use of highpressure processing to improve the redness of dark-cutting beef[J]. Meat and Muscle Biology, 2023, 3(1): 100260. DOI:10.1016/j.afres.2022.100260.

[9]

ZHANG Y N, HOLMAN B W B, MAO Y W, et al. Determination of a pH threshold for dark cutting beef based on visual evaluation by Asian consumers[J]. Meat Science, 2021, 172(2): 108347. DOI:10.1016/j.meatsci.2020.108347.

[10]

WU S, LUO X, YANG X Y, et al. Understanding the development of color and color stability of dark cutting beef based on mitochondrial proteomics[J]. Meat Science, 2020, 163(5): 108046. DOI:10.1016/j.meatsci.2020.108046.

[11]

MOISEEV I, CORNFORTH D P. Treatments for prevention of persistent pinking in dark-cutting beef patties[J]. Journal of Food Science, 1999, 64(4): 738-743. DOI:10.1111/j.1365-2621.1999.tb15122.x.

[12]

APPLE J, SAWYER J, MEULLENET J F, et al. Lactic acid enhancement can improve the fresh and cooked color of darkcutting beef[J]. Journal of Animal Science, 2011, 89(12): 4207-4220. DOI:10.2527/jas.2011-4147.

[13]

NAIR M N, SUMAN S P, LI S, et al. Temperature- and pH-dependent effect of lactate on in vitro redox stability of red meat myoglobins[J]. Meat Science, 2014, 96(1): 408-412. DOI:10.1016/j.meatsci.2013.07.033.

[15]

NURILMALA M, USHIO H, OCHIAI Y. pH- and temperature-dependent denaturation profiles of tuna myoglobin[J]. Fisheries Science, 2018, 84: 579-587. DOI:10.1007/s12562-018-1198-1.

[16]

TANG J, FAUSTMAN C, HOAGLAND T A. Krzywicki revisited:equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts[J]. Journal of Food Science, 2004, 69(9): C717-C720. DOI:10.1111/j.1365-2621.2004.tb09922.x.

[17]

YANG H B, HOPKINS D L, ZHANG Y, et al. Preliminary investigation of the use of Raman spectroscopy to predict beef spoilage in different types of packaging[J]. Meat Science, 2020, 165: 108136. DOI:10.1016/j.meatsci.2020.108136.

[18]

CHELH I, GATELLIER P, SANTÉ-LHOUTELLIER V. A simplified procedure for myofibril hydrophobicity determination[J]. Meat Science, 2006, 74(4): 681-683. DOI:10.1016/j.meatsci.2006.05.019.

[21]

WANG N, HU L, GUO X, et al. Effects of malondialdehyde on the protein oxidation and protein degradation of Coregonus Peled myofibrillar protein[J]. Journal of Food Measurement and Characterization, 2022, 16(5): 3459-3468. DOI:10.1007/s11694-022-01452-9.

[23]

YAN W J, XU B C, JIA F, et al. The effect of high-pressure carbon dioxide on the skeletal muscle myoglobin[J]. Food and Bioprocess Technology, 2016, 9: 1716-1723. DOI:10.1007/s11947-016-1747-5.

[24]

QI J J, YANG X Y, CUI Y, et al. Multispectral and molecular dynamics study on the impact of trans, trans-2,4-decadienal and 4-hydroxy-2-nonenal on myoglobin redox stability[J]. Food Chemistry, 2024, 433: 137366. DOI:10.1016/j.foodchem.2023.137366.

[26]
LI-CHAN E, NAKAI S, HIROTSUKA M. Raman spectroscopy as a probe of protein structure in food systems[M]// YADA R Y, JACKMAN R L, SMITH J L. Protein structure-function relationships in foods. Berlin: Springer, 1994: 163-197. DOI:10.1007/978-1-4615-2670-4_8.
[27]

MORIYAMA Y, TAKEDA K. Critical temperature of secondary structural change of myoglobin in thermal denaturation up to 130 ℃ and effect of sodium dodecyl sulfate on the change[J]. Journal of Physical Chemistry B, 2010, 114(7): 2430. DOI:10.1021/jp908700j.

[28]

XU Z R, CAO Q J, MANYANDE A, et al. Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods[J]. Food Chemistry, 2022, 382: 132106. DOI:10.1016/j.foodchem.2022.132106.

[29]

LIU H, LI Q, JIANG S, et al. Exploring the underlying mechanisms on NaCl-induced reduction in digestibility of myoglobin[J]. Food Chemistry, 2022, 380: 132183. DOI:10.1016/j.foodchem.2022.132183.

[30]

QIAN Y D, XU X Q, WANG Q, et al. Electrochemical probing of the solution pH-induced structural alterations around the heme group in myoglobin[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16941-16948. DOI:10.1039/c3cp52352g.

[33]

LEI X Z, QIN B, YE F, et al. Interaction between secondary lipid oxidation products and hemoglobin with multi-spectroscopic techniques and docking studies[J]. Food Chemistry, 2022, 394: 133497. DOI:10.1016/j.foodchem.2022.133497.

[34]

WANG H T, ZHU J M, ZHANG H W, et al. Understanding interactions among aldehyde compounds and porcine myofibrillar proteins by spectroscopy and molecular dynamics simulations[J]. Journal of Molecular Liquids, 2022, 349: 118190. DOI:10.1016/j.molliq.2021.118190.

[37]

ESSA H, MAGNER E, COONEY J, et al. Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates[J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 49(1/4): 61-68. DOI:10.1016/j.molcatb.2007.07.005.

[38]

FILGUERAS R S, GATELLIER P, FERREIRA C, et al. Nutritional value and digestion rate of rhea meat proteins in association with storage and cooking processes[J]. Meat Science, 2011, 89(1): 6-12. DOI:10.1016/j.meatsci.2011.02.028.

[39]

DORH N, ZHU S, DHUNGANA K B, et al. BODIPY-based fluorescent probes for sensing protein surface-hydrophobicity[J]. Scientific Reports, 2015, 5(1): 18337. DOI:10.1038/SREP18337.

Meat Research
Pages 1-8
Cite this article:
YAO M, QI J, YANG X, et al. Effect of Different pH on the Structure and Thermal Stability of Myoglobin. Meat Research, 2024, 38(6): 1-8. https://doi.org/10.7506/rlyj1001-8123-20240320-060
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return