PDF (4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Basic Research | Publishing Language: Chinese | Open Access

Effect of Grape Seed Extract on Eating Quality of Repeatedly Frozen-Thawed Altay Sheep Meat

Guichuan SHANG1,2 Jiukai ZHANG2Danlei LI2Bingwu ZHOU2Qian HU2Weizhong HE3Chunbao LI1 ()Ying CHEN2 ()
National Key Laboratory of Meat Quality Control and New Resource Creation, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Chinese Academy of Inspection and Quarantine, Beijing 100176, China
Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Ürümqi 830000, China
Show Author Information

Abstract

This study aimed to examine the effects of grape seed extract (GSE) on enhancing the quality of Altay sheep meat during repeated freeze-thaw cycles. The surface of the Longissimus dorsi muscle was sprayed with 0.5 g/100 mL GSE aqueous solution prior to undergoing 1, 3, 5 or 7 freeze-thaw cycles. At each cycle, meat color, myoglobin oxidation status, pH, shear force, thiobarbituric acid reactive substances (TBARS) value, total volatile basic nitrogen (TVB-N) content and volatile compound profile were determined. The results indicated that with increasing freeze-thaw cycles, lightness (L*), redness (a*), relative content of oxymyoglobin (OMb), pH, and shear force decreased; yellowness (b*), TBARS value, and relative contents of deoxymyoglobin (DMb) and metamyoglobin (MMb) showed an increasing trend; TVB-N contents initially increased and then decreased. The incorporation of GSE was found to mitigate the pH decrease and significantly lower the TBARS value (P < 0.05) during freeze-thaw cycles, but had no significant effect on the color, shear force or TVB-N content of mutton. Additionally, the levels of major volatile flavor compounds such as hexanal, 1-octene-3-ol, (E,E)-2,4-decenal, (E,Z)-2,4-decenal, (E)-2-octanal, octanal, heptanal, 3-octanone, carbon disulfide, and 2-pentylfuran initially rose and then fell with increasing freeze-thaw cycles, resulting in flavor deterioration. Compared with the blank group, GSE addition significantly curtailed the formation of aldehydes, ketones, alcohols, and furans resulting from lipid oxidation during repeated freeze-thaw cycles, thereby improving mutton flavor. This research provides a theoretical foundation and technical support for the flavor preservation and regulation of meat products during cold-chain circulation.

CLC number: TS251.5+3 Document code: A Article ID: 1001-8123(2024)04-0001-08

References

[2]

FRELKA J C, PHINNEY D M, YANG X, et al. Assessment of chicken breast meat quality after freeze/thaw abuse using magnetic resonance imaging techniques[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 844-853. DOI:10.1002/jsfa.9254.

[3]

REN Q S, FANG K, YANG X T, et al. Ensuring the quality of meat in cold chain logistics: a comprehensive review[J]. Trends in Food Science and Technology, 2022, 119: 133-151. DOI:10.1016/j.tifs.2021.12.006.

[5]

SUN N, CHEN J, WANG D, et al. Advance in food-derived phospholipids: sources, molecular species and structure as well as their biological activities[J]. Trends in Food Science and Technology, 2018, 80: 199-211. DOI:10.1016/j.tifs.2018.08.010.

[6]

ZHANG M, SU R, CORAZZIN M, et al. Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics[J]. Food Chemistry, 2023, 405: 134882. DOI:10.1016/j.foodchem.2022.134882.

[7]

LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Science, 2012, 91(2): 93-98. DOI:10.1016/j.meatsci.2012.01.013.

[8]

DOMÍNGUEZ R, PATEIRO M, GAGAOUA M, et al. A comprehensive review on lipid oxidation in meat and meat products[J]. Antioxidants, 2019, 8(10): 429. DOI:10.3390/antiox8100429.

[9]

XU L, LIU C Y, LI S B, et al. Association of lipidome evolution with the corresponding volatile characteristics of postmortem lamb during chilled storage[J]. Food Research International, 2023, 169: 112916. DOI:10.1016/j.foodres.2023.112916.

[10]

HADIDI M, AGHAHABAEI F, MORENO A, et al. Plant by-product antioxidants: control of protein-lipid oxidation in meat and meat products[J]. LWT-Food Science and Technology, 2022, 169: 114003. DOI:10.1016/j.lwt.2022.114003.

[11]

XU X Q, LIU A M, HU S Y, et al. Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action[J]. Food Chemistry, 2021, 353: 129488. DOI:10.1016/j.foodchem.2021.129488.

[12]

JI X, LIANG J, WANG Y, et al. Synthetic antioxidants as contaminants of emerging concern in indoor environments: knowns and unknowns[J]. Environmental Science and Technology, 2023, 57: 21550-21557. DOI:10.1021/acs.est.3c06487.

[13]

RIBEIRO S J, SANTOS C M J M, SILVA R K L, et al. Natural antioxidants used in meat products: a brief review[J]. Meat Science, 2018, 148: 181-188. DOI:10.1016/j.meatsci.2018.10.016.

[14]

STOIA M, OANCEA S. Low-molecular-weight synthetic antioxidants: classification, pharmacological profile, effectiveness and trends[J]. Antioxidants, 2022, 11(4): 638. DOI:10.3390/antiox11040638.

[15]

NOWSHEHRI A J, BHAT A Z, SHAH Y M. Blessings in disguise: bio-functional benefits of grape seed extracts[J]. Food Research International, 2015, 77: 333-348. DOI:10.1016/j.foodres.2015.08.026.

[16]

RABABAH T M, HETTIARACHCHY N S, HORAX R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone[J]. Journal of Agricultural and Food Chemistry, 2004, 52(16): 5183-5186. DOI:10.1021/jf049645z.

[18]

MIELNIK M B, OLSEN E, VOGT G, et al. Grape seed extract as antioxidant in cooked, cold stored turkey meat[J]. LWT-Food Science and Technology, 2006, 39(3): 191-198. DOI:10.1016/j.lwt.2005.02.003.

[20]

UTPOTT M, RODRIGUES E, DE OLIVEIRA RIOS A, et al. Metabolomics: an analytical technique for food processing evaluation[J]. Food Chemistry, 2022, 366: 130685. DOI:10.1016/j.foodchem.2021.130685.

[21]

BEALE D J, PINU F R, KOUREMENOS K A, et al. Review of recent developments in GC-MS approaches to metabolomics-based research[J]. Metabolomics, 2018, 14(11): 1-31. DOI:10.1007/s11306-018-1449-2.

[22]

GRABEŽ V, BJELANOVIĆ M, ROHLOF J, et al. The relationship between volatile compounds, metabolites and sensory attributes: a case study using lamb and sheep meat[J]. Small Ruminant Research, 2019, 181: 12-20. DOI:10.1016/j.smallrumres.2019.09.022.

[25]

KRZYWICKI K. The determination of haem pigments in meat[J]. Meat Science, 1982, 7(1): 29-36. DOI:10.1016/0309-1740(82)90095-X.

[26]

SU L Y, ZHAO J L, XIA J L, et al. Protecting meat color: the interplay of betanin red and myoglobin through antioxidation and coloration[J]. Food Chemistry, 2024, 442(2): 138410. DOI:10.1016/j.foodchem.2024.138410.

[27]

SONG X C, CAMELLAS E, NER C. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics[J]. Food Chemistry, 2021, 342: 128341. DOI:10.1016/j.foodchem.2020.128341.

[28]

HU Q, ZHANG J K, HE L, et al. New insight into the evolution of volatile profiles in four vegetable oils with different saturations during thermal processing by integrated volatolomics and lipidomics analysis[J]. Food Chemistry, 2023, 403: 134342. DOI:10.1016/j.foodchem.2022.134342.

[29]

ZHANG H, HUANG D, PU D, et al. Multivariate relationships among sensory attributes and volatile components in commercial dry porcini mushrooms (Boletus edulis)[J]. Food Research International, 2020, 133: 109112. DOI:10.1016/j.foodres.2020.109112.

[30]
ACREE T, ARN H. Flavornet and human odor space[DB/OL]. (2004-06-25) [2024-02-04]. http://www.flavornet.org/index.html.
[31]

QI J, LI C B, CHEN Y J, et al. Changes in meat quality of ovine longissimus dorsi muscle in response to repeated freeze and thaw[J]. Meat Science, 2012, 92(4): 619-626. DOI:10.1016/j.meatsci.2012.06.009.

[32]

LEDWARD D A. Post-slaughter influences on the formation of metmyoglobin in muscles[J]. Meat Science, 1985(15): 149-171. DOI:10.1016/0309-1740(85)90034-8.

[35]

LIANG J F, YANG Q Y, ZHU M, et al. AMP-activated protein kinase (AMPK) α2 subunit mediates glycolysis in postmortem skeletal muscle[J]. Meat Science, 2013, 95(3): 536-541. DOI:10.1016/j.meatsci.2013.05.025.

[36]

SUN Y, JIA Y, SONG M, et al. Effects of radio frequency thawing on the quality characteristics of frozen mutton[J]. Food and Bioproducts Processing, 2023, 139: 24-33. DOI:10.1016/j.fbp.2023.02.007.

[37]

BEKHIT A E D A, HOLMAN B W B, GITERU S G, et al. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review[J]. Trends in Food Science and Technology, 2021, 109: 280-302. DOI:10.1016/j.tifs.2021.01.006.

[38]

ZHANG Y M, HOLMAN B W B, PONNAMPALAM E N, et al. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS)[J]. Meat Science, 2019, 149: 114-119. DOI:10.1016/j.meatsci.2018.11.018.

[39]

MOTTRAM D S. Flavour formation in meat and meat products: a review[J]. Food Chemistry, 1998, 62: 415-424. DOI:10.1016/S0308-8146(98)00076-4.

[40]

HECK R T, FAGUNDES M B, CICHOSKI A J, et al. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary[J]. Meat Science, 2019, 148: 164-170. DOI:10.1016/j.meatsci.2018.10.017.

[41]

CASABURI A, PIOMBINO P, NYCHAS G, et al. Bacterial populations and the volatilome associated to meat spoilage[J]. Food Microbiology, 2015, 45: 83-102. DOI:10.1016/j.fm.2014.02.002.

[42]

BLEICHER J, EBNER E E, BAK K H. Formation and analysis of volatile and odor compounds in meat: a review[J]. Molecules, 2022, 27(19): 6703. DOI:10.3390/molecules27196703.

[43]

SAM A, CONG L, XU B C. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat[J]. Food Chemistry, 2022, 376: 131881. DOI:10.1016/j.foodchem.2021.131881.

[44]

WEN X Y, ZHANG D Q, LI X, et al. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging[J]. Food Microbiology, 2022, 104: 103996. DOI:10.1016/j.fm.2022.103996.

[45]

SARAIVA C, OLIVEIRA I, SILVA J A, et al. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef[J]. Journal of Food Science and Technology, 2015, 52: 3887-3898. DOI:10.1007/s13197-014-1447-y.

[46]

NIEMINEN T T, DALGAARD P, BJORKRÖTH J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork[J]. International Journal of Food Microbiology, 2016, 218: 86-95. DOI:10.1016/j.ijfoodmicro.2015.11.003.

[47]

FRANKEL E N. Volatile lipid oxidation products[J]. Progress in Lipid Research, 1983, 22(1): 1-33. DOI:10.1016/0163-7827(83)90002-4.

[48]

ECHEGARAY N, DOMÍNGUEZ R, CADAVEZ V A P, et al. Influence of feeding system on Longissimus thoracis et lumborum volatile compounds of an Iberian local lamb breed[J]. Small Ruminant Research, 2021: 106417. DOI:10.1016/j.smallrumres.2021.106417.

Meat Research
Pages 1-8
Cite this article:
SHANG G, ZHANG J, LI D, et al. Effect of Grape Seed Extract on Eating Quality of Repeatedly Frozen-Thawed Altay Sheep Meat. Meat Research, 2024, 38(4): 1-8. https://doi.org/10.7506/rlyj1001-8123-20240410-071
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return