This study aimed to examine the effects of grape seed extract (GSE) on enhancing the quality of Altay sheep meat during repeated freeze-thaw cycles. The surface of the Longissimus dorsi muscle was sprayed with 0.5 g/100 mL GSE aqueous solution prior to undergoing 1, 3, 5 or 7 freeze-thaw cycles. At each cycle, meat color, myoglobin oxidation status, pH, shear force, thiobarbituric acid reactive substances (TBARS) value, total volatile basic nitrogen (TVB-N) content and volatile compound profile were determined. The results indicated that with increasing freeze-thaw cycles, lightness (L*), redness (a*), relative content of oxymyoglobin (OMb), pH, and shear force decreased; yellowness (b*), TBARS value, and relative contents of deoxymyoglobin (DMb) and metamyoglobin (MMb) showed an increasing trend; TVB-N contents initially increased and then decreased. The incorporation of GSE was found to mitigate the pH decrease and significantly lower the TBARS value (P < 0.05) during freeze-thaw cycles, but had no significant effect on the color, shear force or TVB-N content of mutton. Additionally, the levels of major volatile flavor compounds such as hexanal, 1-octene-3-ol, (E,E)-2,4-decenal, (E,Z)-2,4-decenal, (E)-2-octanal, octanal, heptanal, 3-octanone, carbon disulfide, and 2-pentylfuran initially rose and then fell with increasing freeze-thaw cycles, resulting in flavor deterioration. Compared with the blank group, GSE addition significantly curtailed the formation of aldehydes, ketones, alcohols, and furans resulting from lipid oxidation during repeated freeze-thaw cycles, thereby improving mutton flavor. This research provides a theoretical foundation and technical support for the flavor preservation and regulation of meat products during cold-chain circulation.
FRELKA J C, PHINNEY D M, YANG X, et al. Assessment of chicken breast meat quality after freeze/thaw abuse using magnetic resonance imaging techniques[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 844-853. DOI:10.1002/jsfa.9254.
REN Q S, FANG K, YANG X T, et al. Ensuring the quality of meat in cold chain logistics: a comprehensive review[J]. Trends in Food Science and Technology, 2022, 119: 133-151. DOI:10.1016/j.tifs.2021.12.006.
SUN N, CHEN J, WANG D, et al. Advance in food-derived phospholipids: sources, molecular species and structure as well as their biological activities[J]. Trends in Food Science and Technology, 2018, 80: 199-211. DOI:10.1016/j.tifs.2018.08.010.
ZHANG M, SU R, CORAZZIN M, et al. Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics[J]. Food Chemistry, 2023, 405: 134882. DOI:10.1016/j.foodchem.2022.134882.
LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Science, 2012, 91(2): 93-98. DOI:10.1016/j.meatsci.2012.01.013.
DOMÍNGUEZ R, PATEIRO M, GAGAOUA M, et al. A comprehensive review on lipid oxidation in meat and meat products[J]. Antioxidants, 2019, 8(10): 429. DOI:10.3390/antiox8100429.
XU L, LIU C Y, LI S B, et al. Association of lipidome evolution with the corresponding volatile characteristics of postmortem lamb during chilled storage[J]. Food Research International, 2023, 169: 112916. DOI:10.1016/j.foodres.2023.112916.
HADIDI M, AGHAHABAEI F, MORENO A, et al. Plant by-product antioxidants: control of protein-lipid oxidation in meat and meat products[J]. LWT-Food Science and Technology, 2022, 169: 114003. DOI:10.1016/j.lwt.2022.114003.
XU X Q, LIU A M, HU S Y, et al. Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action[J]. Food Chemistry, 2021, 353: 129488. DOI:10.1016/j.foodchem.2021.129488.
JI X, LIANG J, WANG Y, et al. Synthetic antioxidants as contaminants of emerging concern in indoor environments: knowns and unknowns[J]. Environmental Science and Technology, 2023, 57: 21550-21557. DOI:10.1021/acs.est.3c06487.
RIBEIRO S J, SANTOS C M J M, SILVA R K L, et al. Natural antioxidants used in meat products: a brief review[J]. Meat Science, 2018, 148: 181-188. DOI:10.1016/j.meatsci.2018.10.016.
STOIA M, OANCEA S. Low-molecular-weight synthetic antioxidants: classification, pharmacological profile, effectiveness and trends[J]. Antioxidants, 2022, 11(4): 638. DOI:10.3390/antiox11040638.
NOWSHEHRI A J, BHAT A Z, SHAH Y M. Blessings in disguise: bio-functional benefits of grape seed extracts[J]. Food Research International, 2015, 77: 333-348. DOI:10.1016/j.foodres.2015.08.026.
RABABAH T M, HETTIARACHCHY N S, HORAX R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone[J]. Journal of Agricultural and Food Chemistry, 2004, 52(16): 5183-5186. DOI:10.1021/jf049645z.
MIELNIK M B, OLSEN E, VOGT G, et al. Grape seed extract as antioxidant in cooked, cold stored turkey meat[J]. LWT-Food Science and Technology, 2006, 39(3): 191-198. DOI:10.1016/j.lwt.2005.02.003.
UTPOTT M, RODRIGUES E, DE OLIVEIRA RIOS A, et al. Metabolomics: an analytical technique for food processing evaluation[J]. Food Chemistry, 2022, 366: 130685. DOI:10.1016/j.foodchem.2021.130685.
BEALE D J, PINU F R, KOUREMENOS K A, et al. Review of recent developments in GC-MS approaches to metabolomics-based research[J]. Metabolomics, 2018, 14(11): 1-31. DOI:10.1007/s11306-018-1449-2.
GRABEŽ V, BJELANOVIĆ M, ROHLOF J, et al. The relationship between volatile compounds, metabolites and sensory attributes: a case study using lamb and sheep meat[J]. Small Ruminant Research, 2019, 181: 12-20. DOI:10.1016/j.smallrumres.2019.09.022.
KRZYWICKI K. The determination of haem pigments in meat[J]. Meat Science, 1982, 7(1): 29-36. DOI:10.1016/0309-1740(82)90095-X.
SU L Y, ZHAO J L, XIA J L, et al. Protecting meat color: the interplay of betanin red and myoglobin through antioxidation and coloration[J]. Food Chemistry, 2024, 442(2): 138410. DOI:10.1016/j.foodchem.2024.138410.
SONG X C, CAMELLAS E, NER C. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics[J]. Food Chemistry, 2021, 342: 128341. DOI:10.1016/j.foodchem.2020.128341.
HU Q, ZHANG J K, HE L, et al. New insight into the evolution of volatile profiles in four vegetable oils with different saturations during thermal processing by integrated volatolomics and lipidomics analysis[J]. Food Chemistry, 2023, 403: 134342. DOI:10.1016/j.foodchem.2022.134342.
ZHANG H, HUANG D, PU D, et al. Multivariate relationships among sensory attributes and volatile components in commercial dry porcini mushrooms (Boletus edulis)[J]. Food Research International, 2020, 133: 109112. DOI:10.1016/j.foodres.2020.109112.
QI J, LI C B, CHEN Y J, et al. Changes in meat quality of ovine longissimus dorsi muscle in response to repeated freeze and thaw[J]. Meat Science, 2012, 92(4): 619-626. DOI:10.1016/j.meatsci.2012.06.009.
LEDWARD D A. Post-slaughter influences on the formation of metmyoglobin in muscles[J]. Meat Science, 1985(15): 149-171. DOI:10.1016/0309-1740(85)90034-8.
LIANG J F, YANG Q Y, ZHU M, et al. AMP-activated protein kinase (AMPK) α2 subunit mediates glycolysis in postmortem skeletal muscle[J]. Meat Science, 2013, 95(3): 536-541. DOI:10.1016/j.meatsci.2013.05.025.
SUN Y, JIA Y, SONG M, et al. Effects of radio frequency thawing on the quality characteristics of frozen mutton[J]. Food and Bioproducts Processing, 2023, 139: 24-33. DOI:10.1016/j.fbp.2023.02.007.
BEKHIT A E D A, HOLMAN B W B, GITERU S G, et al. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review[J]. Trends in Food Science and Technology, 2021, 109: 280-302. DOI:10.1016/j.tifs.2021.01.006.
ZHANG Y M, HOLMAN B W B, PONNAMPALAM E N, et al. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS)[J]. Meat Science, 2019, 149: 114-119. DOI:10.1016/j.meatsci.2018.11.018.
MOTTRAM D S. Flavour formation in meat and meat products: a review[J]. Food Chemistry, 1998, 62: 415-424. DOI:10.1016/S0308-8146(98)00076-4.
HECK R T, FAGUNDES M B, CICHOSKI A J, et al. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary[J]. Meat Science, 2019, 148: 164-170. DOI:10.1016/j.meatsci.2018.10.017.
CASABURI A, PIOMBINO P, NYCHAS G, et al. Bacterial populations and the volatilome associated to meat spoilage[J]. Food Microbiology, 2015, 45: 83-102. DOI:10.1016/j.fm.2014.02.002.
BLEICHER J, EBNER E E, BAK K H. Formation and analysis of volatile and odor compounds in meat: a review[J]. Molecules, 2022, 27(19): 6703. DOI:10.3390/molecules27196703.
SAM A, CONG L, XU B C. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat[J]. Food Chemistry, 2022, 376: 131881. DOI:10.1016/j.foodchem.2021.131881.
WEN X Y, ZHANG D Q, LI X, et al. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging[J]. Food Microbiology, 2022, 104: 103996. DOI:10.1016/j.fm.2022.103996.
SARAIVA C, OLIVEIRA I, SILVA J A, et al. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef[J]. Journal of Food Science and Technology, 2015, 52: 3887-3898. DOI:10.1007/s13197-014-1447-y.
NIEMINEN T T, DALGAARD P, BJORKRÖTH J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork[J]. International Journal of Food Microbiology, 2016, 218: 86-95. DOI:10.1016/j.ijfoodmicro.2015.11.003.
FRANKEL E N. Volatile lipid oxidation products[J]. Progress in Lipid Research, 1983, 22(1): 1-33. DOI:10.1016/0163-7827(83)90002-4.
ECHEGARAY N, DOMÍNGUEZ R, CADAVEZ V A P, et al. Influence of feeding system on Longissimus thoracis et lumborum volatile compounds of an Iberian local lamb breed[J]. Small Ruminant Research, 2021: 106417. DOI:10.1016/j.smallrumres.2021.106417.