PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Progress in Non-Destructive Analysis of Meat Quality by Near-Infrared Spectroscopy

Dong WANG Yunxia LUANXinran WANGWenshen JIA ()
Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Show Author Information

Abstract

In recent years, near-infrared spectroscopy, being non-destructive, fast, efficient, and environmentally friendly, has been widely applied in the non-destructive and rapid analysis of meat quality. However, the complex matrix and high moisture content of meat often interfere with near-infrared spectroscopy, which will affect the accuracy of analytical results. In order to gain insights into the latest progress in the application of near-infrared spectroscopy in non-destructive analysis of meat quality, this review deals with the recent applications of near-infrared spectroscopy in non-destructive quality analysis of common meats such as beef, mutton, pork, chicken as well as aquatic products from 4 aspects: quality testing, species identification, authentication, and safety evaluation. Moreover, an outlook on future prospects in this field is given. This paper will provide reference and inspiration for the application of near-infrared spectroscopy in non-destructive quality testing, species identification, authentication and safety evaluation of meat.

CLC number: TS251.5 Document code: A Article ID: 1001-8123(2024)05-0061-10

References

[1]

GRASSI S, JIMÉNEZ A, RUIZ J, et al. Use of ultrasound and NIRs as tools for monitoring ice formation in superchilled meat[J]. Journal of Food Engineering, 2024, 369: 111957. DOI:10.1016/j.jfoodeng.2024.111957.

[2]

XU X D, GAO B, LI Y Y, et al. The effect of temperature on the identification of NIR animal fats and oils species and its mechanism[J]. Vibrational Spectroscopy, 2023, 124: 103498. DOI:10.1016/j.vibspec.2023.103498.

[3]

TANG X, XIE L, LIU S Y, et al. Extensive evaluation of prediction performance for 15 pork quality traits using large scale VIS/NIRS data[J]. Meat Science, 2022, 192: 108902. DOI:10.1016/j.meatsci.2022.108902.

[4]

MELADO-HERREROS Á, NIETO-ORTEGA S, OLABARRIETA I, et al. Comparison of three rapid non-destructive techniques coupled with a classifier to increase transparency in the seafood value chain: Bioelectrical impedance analysis (BIA), near-infrared spectroscopy (NIR) and time domain reflectometry (TDR)[J]. Journal of Food Engineering, 2022, 322: 110979. DOI:10.1016/j.jfoodeng.2022.110979.

[8]

ACHATA E M, ESQUERRE C, OJHA K S, et al. Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky[J]. Innovative Food Science and Emerging Technologies, 2021, 69: 102611. DOI:10.1016/j.ifset.2021.102611.

[10]

DONG F J, BI Y Z, HAO J, et al. A new comprehensive quantitative index for the assessment of essential amino acid quality in beef using Vis-NIR hyperspectral imaging combined with LSTM[J]. Food Chemistry, 2024, 440: 138040. DOI:10.1016/j.foodchem.2023.138040.

[11]

DIAS C S A M M, NUNES H P, MELO T M M V, et al. Application of near infrared reflectance (NIR) spectroscopy to predict the moisture, protein, and fat content of beef for gourmet hamburger preparation[J]. Livestock Science, 2021, 254: 104772. DOI:10.1016/j.livsci.2021.104772.

[15]

LIU S J, DONG F J, HAO J, et al. Combination of hyperspectral imaging and entropy weight method for the comprehensive assessment of antioxidant enzyme activity in Tan mutton[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 291: 122342. DOI:10.1016/j.saa.2023.122342.

[17]

LIU C C, CHU Z J, WENG S Z, et al. Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using inputmodified convolution neural network[J]. Food Chemistry, 2022, 385: 132651. DOI:10.1016/j.foodchem.2022.132651.

[18]

ZHANG J J, MA Y H, LIU G S, et al. Rapid evaluation of texture parameters of Tan mutton using hyperspectral imaging with optimization algorithms[J]. Food Control, 2022, 135: 108815. DOI:10.1016/j.foodcont.2022.108815.

[19]

CHENG L J, LIU G S, HE J G, et al. Development of a novel quantitative function between spectral value and metmyoglobin content in Tan mutton[J]. Food Chemistry, 2021, 342: 128351. DOI:10.1016/j.foodchem.2020.128351.

[20]

FAN N Y, MA X, LIU G S, et al. Rapid determination of TBARS content by hyperspectral imaging for evaluating lipid oxidation in mutton[J]. Journal of Food Composition and Analysis, 2021, 103: 104110. DOI:10.1016/j.jfca.2021.104110.

[21]

RAMO L B, NOBREGA R O, FERNANDES D D S, et al. Determination of moisture and total protein and phosphorus contents in powdered chicken egg samples using digital images, NIR spectra, data fusion, and multivariate calibration[J]. Journal of Food Composition and Analysis, 2024, 127: 105940. DOI:10.1016/j.jfca.2023.105940.

[22]

SERVA L, MARCHESINI G, CULLERE M, et al. Testing two NIRs instruments to predict chicken breast meat quality and exploiting machine learning approaches to discriminate among genotypes and presence of myopathies[J]. Food Control, 2023, 144: 109391. DOI:10.1016/j.foodcont.2022.109391.

[26]

ZUO J W, PENG Y K, LI Y Y, et al. Nondestructive detection of nutritional parameters of pork based on NIR hyperspectral imaging technique[J]. Meat Science, 2023, 202: 109204. DOI:10.1016/j.meatsci.2023.109204.

[27]

RONG Y N, ZAREEF M, LIU L H, et al. Application of portable Vis-NIR spectroscopy for rapid detection of myoglobin in frozen pork[J]. Meat Science, 2023, 201: 109170. DOI:10.1016/j.meatsci.2023.109170.

[28]

CHENG J H, SUN J, YAO K S, et al. Generalized and hetero twodimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork[J]. Food Control, 2023, 153: 109940. DOI:10.1016/j.foodcont.2023.109940.

[32]

LINTVEDT T A, ANDERSEN P V, AFSETH N K, et al. Raman spectroscopy and NIR hyperspectral imaging for in-line estimation of fatty acid features in salmon fillets[J]. Talanta, 2023, 254: 124113. DOI:10.1016/j.talanta.2022.124113.

[34]

AGYEKUM A A, KUTSANEDZIE F Y H, ANNAVARAM V, et al. FT-NIR coupled chemometric methods rapid prediction of K-value in fish[J]. Vibrational Spectroscopy, 2020, 108: 103044. DOI:10.1016/j.vibspec.2020.103044.

[36]

ALSAQRI S N, MABOOD F, BOQUÉ R, et al. Rapid detection of pork gelatin in ice cream samples by using non-destructive FTNIR spectroscopy and partial least squares-discriminant analysis[J]. Food Chemistry Advances, 2023, 2: 100215. DOI:10.1016/j.focha.2023.100215.

[37]

ZHAO J Y, YAO H Z. Non-destructive identification of long-term frozen pork by near infrared analysis technology and electronic nose technique[J]. Journal of Food Science and Biotechnology, 2021, 40(3): 89-96. DOI:10.3969/j.issn.1673-1689.2021.03.011.

[39]

BARRAGÁN W, AALHUS J L, PENNER G, et al. Authentication of barley-finished beef using visible and near infrared spectroscopy (Vis-NIRS) and different discrimination approaches[J]. Meat Science, 2021, 172: 108342. DOI:10.1016/j.meatsci.2020.108342.

[43]

HORCADA A, VALERA M, JUÁREZ M, et al. Authentication of Iberian pork official quality categories using a portable near infrared spectroscopy (NIRS) instrument[J]. Food Chemistry, 2020, 318: 126471. DOI:10.1016/j.foodchem.2020.126471.

[44]

TOTARO M P, SQUEO G, ANGELIS D D, et al. Application of NIR spectroscopy coupled with DD-SIMCA class modelling for the authentication of pork meat[J]. Journal of Food Composition and Analysis, 2023, 118: 105211. DOI:10.1016/j.jfca.2023.105211.

[45]

PARASTAR H, KOLLENBURG G V, WEESEPOEL Y, et al. Integration of handheld NIR and machine learning to “Measure 7 Monitor” chicken meat authenticity[J]. Food Control, 2020, 112: 107149. DOI:10.1016/j.foodcont.2020.107149.

[46]

CHEN X H, CHENG G Y, LIU S H, et al. Probing 1D convolutional neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 279: 121350. DOI:10.1016/j.saa.2022.121350.

[49]

SILVA L C R, FOLLI G S, SANTOS L P, et al. Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer[J]. Vibrational Spectroscopy, 2020, 111: 103158. DOI:10.1016/j.vibspec.2020.103158.

[50]

ZHANG Y X, ZHENG M C, ZHU R G, et al. Detection of adulteration in mutton using digital images in time domain combined with deep learning algorithm[J]. Meat Science, 2022, 192: 108850. DOI:10.1016/j.meatsci.2022.108850.

[51]

MABOOD F, BOQUÉ R, ALKINDI A Y, et al. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis[J]. Meat Science, 2020, 163: 108084. DOI:10.1016/j.meatsci.2020.108084.

[52]

WENG S Z, GUO B Q, TANG P P, et al. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 230: 118005. DOI:10.1016/j.saa.2019.118005.

[54]

LENG T, LI F, XIONG L A, et al. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics[J]. Food Control, 2020, 113: 107203. DOI:10.1016/j.foodcont.2020.107203.

[58]

WANG L, LIANG J, LI F, et al. Deep learning based on the Vis-NIR two-dimensional spectroscopy for adulteration identification of beef and mutton[J]. Journal of Food Composition and Analysis, 2024, 126: 105890. DOI:10.1016/j.jfca.2023.105890.

[60]

DASHTI A, MÜLLER-MAATSCH J, ROETGERINK E, et al. Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity[J]. Food Chemistry: X, 2023, 18: 100667. DOI:10.1016/j.fochx.2023.100667.

[61]

JIANG H Z, YUAN W D, RU Y, et al. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282: 121689. DOI:10.1016/j.saa.2022.121689.

[62]

ZHANG Y X, ZHENG M C, ZHU R G, et al. Adulteration discrimination and analysis of fresh and frozen-thawed minced adulterated mutton using hyperspectral images combined with recurrence plot and convolutional neural network[J]. Meat Science, 2022, 192: 108900. DOI:10.1016/j.meatsci.2022.108900.

[65]

BONAH E, HUANG X Y, AHETO J H, et al. Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles[J]. Infrared Physics and Technology, 2020, 107: 103327. DOI:10.1016/j.infrared.2020.103327.

[66]

ACHATA E M, OLIVEIRA M, ESQUERRE C A, et al. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi muscle under simulated normal and abuse storage conditions[J]. LWT-Food Science and Technology, 2020, 128: 109463. DOI:10.1016/j.lwt.2020.109463.

[67]

ZHAO H T, FENG Y Z, CHEN W, et al. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging[J]. Meat Science, 2019, 151: 75-81. DOI:10.1016/j.meatsci.2019.01.010.

[71]

QIU R C, ZHAO Y L, KONG D D, et al. Development and comparison of classification models on VIS-NIR hyperspectral imaging spectra for qualitative detection of the Staphylococcus aureus in fresh chicken breast[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285: 121838. DOI:10.1016/j.saa.2022.121838.

[72]

LI X X, CAI M R, LI M S, et al. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken[J]. Food Control, 2023, 145: 109416. DOI:10.1016/j.foodcont.2022.109416.

Meat Research
Pages 61-70
Cite this article:
WANG D, LUAN Y, WANG X, et al. Progress in Non-Destructive Analysis of Meat Quality by Near-Infrared Spectroscopy. Meat Research, 2024, 38(5): 61-70. https://doi.org/10.7506/rlyj1001-8123-20240513-118
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return