Fermented meat products are favored by consumers because of their unique flavor and rich diversity. As a coagulase-negative staphylococcus, Staphylococcus xylosus has been widely used in fermented meat products because of its good biosafety and fermentation characteristics. This paper reviews the role and importance of S. xylosus in the quality, flavor and safety of fermented meat products, as well as the composition, succession and metabolic characteristics of microbial communities during fermentation, hoping to provide theoretical reference and technical support for improving the flavor and quality of fermented meat products.
WANG H, LI Y, XIA X, et al. Flavour formation from hydrolysis of pork meat protein extract by the protease from Staphylococcus carnosus isolated from Harbin dry sausage[J]. LWT-Food Science and Technology, 2022, 163: 113525. DOI:10.1016/j.lwt.2022.113525.
TALON R, ZAGOREC M. Special issue: beneficial microorganisms for food manufacturing-fermented and biopreserved foods and beverages[J]. Microorganisms, 2017, 5(4): 71. DOI:10.3390/microorganisms5040071.
WANG H, XU J H, LIU Q, et al. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage[J]. Meat Science, 2022, 189: 108827. DOI:10.1016/j.meatsci.2022.108827.
LI Y X, YU Z H, ZHU Y C, et al. Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes[J]. Food Quality and Safety, 2020, 4(4): 225-235. DOI:10.1093/fqsafe/fyaa027.
GAO P, CAO X, JIANG Q X, et al. Improving the quality characteristics of rice mash grass carp using different microbial inoculation strategies[J]. Food Bioscience, 2021, 44: 101443. DOI:10.1016/j.fbio.2021.101443.
XIAO Y Q, LIU Y N, CHEN C G, et al. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages[J]. Food Research International, 2020, 135: 109247. DOI:10.1016/j.foodres.2020.109247.
HU Y J, XIA W S, LIU X Y. Changes in biogenic amines in fermented silver carp sausages inoculated with mixed starter cultures[J]. Food Chemistry, 2007, 104(1): 188-195. DOI:10.1016/j.foodchem.2006.11.023.
STAVROPOULOU D A, FILIPPOU P, DE SMET S, et al. Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system[J]. Food Microbiology, 2018, 76: 180-188. DOI:10.1016/j.fm.2018.05.006.
DENKTAS S, YALCIN S, KAYAARDI S, et al. Effect of starter culture type, cooking process and storage time at –18 ℃ on chemical, color and microbiological qualities of fermented sucuk doner kebab[J]. Food Chemistry, 2021, 354: 129549. DOI:10.1016/j.foodchem.2021.129549.
DOS SANTOS CRUXEN C E, FUNCK G D, DA SILVA DANNENBERG G, et al. Characterization of Staphylococcus xylosus LQ3 and its application in dried cured sausage[J]. LWT-Food Science and Technology, 2017, 86: 538-543. DOI:10.1016/j.lwt.2017.08.045.
PREMI L, ROCCHETTI G, ROSSETTI C, et al. Coagulase-negative staphylococci enhance the colour of fermented meat through a complex cross-talk between the arginase and nitric oxide synthase activities[J]. LWT-Food Science and Technology, 2024, 202: 116333. DOI:10.1016/j.lwt.2024.116333.
HU Y Y, CHEN Q, WEN R X, et al. Quality characteristics and flavor profile of Harbin dry sausages inoculated with lactic acid bacteria and Staphylococcus xylosus[J]. LWT-Food Science and Technology, 2019, 114: 108392. DOI:10.1016/j.lwt.2019.108392.
DOS SANTOS CRUXEN C E, BRAUN C L K, FAGUNDES M B, et al. Development of fermented sausage produced with mutton and native starter cultures[J]. LWT-Food Science and Technology, 2018, 95: 23-31. DOI:10.1016/j.lwt.2018.04.060.
LIU M Y, LUO H T, XIAO Q, et al. Effect of Latilactobacillus sakei and Staphylococcus xylosus on the textural characteristics of dry fermented sausages[J]. Food Bioscience, 2024, 59: 103972. DOI:10.1016/j.fbio.2024.103972.
HU Y Y, WANG H, KONG B H, et al. The succession and correlation of the bacterial community and flavour characteristics of Harbin dry sausages during fermentation[J]. LWT-Food Science and Technology, 2021, 138: 110689. DOI:10.1016/j.lwt.2020.110689.
SUN Q X, CHEN Q, LI F F, et al. Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum[J]. Food Control, 2016, 68: 358-366. DOI:10.1016/j.foodcont.2016.04.021.
BIS-SOUZA C V, PATEIRO M, DOMÍNGUEZ R, et al. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides[J]. Journal of Food Science and Technology, 2019, 56(12): 5465-5473. DOI:10.1007/s13197-019-04018-8.
WOLDEMARIAMYOHANNES K, WAN Z, YU Q L, et al. Prebiotic, probiotic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14709-14727. DOI:10.1021/acs.jafc.0c06396.
DE LIMA ALVES L, DONADEL J Z, ATHAYDE D R, et al. Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages[J]. Ultrasonics Sonochemistry, 2020, 67: 105161. DOI:10.1016/j.ultsonch.2020.105161.
CASABURI A, DI MONACO R, CAVELLA S, et al. Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits[J]. Food Microbiology, 2008, 25(2): 335-347. DOI:10.1016/j.fm.2007.10.006.
ZENG X F, HE L P, GUO X, et al. Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish[J]. International Journal of Food Microbiology, 2017, 242: 141-151. DOI:10.1016/j.ijfoodmicro.2016.11.014.
MÜLLER A, FOGARASSY G, BAJAC A, et al. Selection of Staphylococcus carnosus strains based on in vitro analysis of technologically relevant physiological activities[J]. Annals of Microbiology, 2016, 66(1): 479-487. DOI:10.1007/s13213-015-1133-y.
SAMELIS J, METAXOPOULOS J, VLASSI M, et al. Stability and safety of traditional Greek salami-a microbiological ecology study[J]. International Journal of Food Microbiology, 1998, 44(1/2): 69-82. DOI:10.1016/S0168-1605(98)00124-X.
CHEN Q, KONG B H, HAN Q, et al. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages[J]. Meat Science, 2016, 121: 196-206. DOI:10.1016/j.meatsci.2016.06.012.
CHEN X, MI R F, QI B, et al. Effect of proteolytic starter culture isolated from Chinese Dong fermented pork (Nanx Wudl) on microbiological, biochemical and organoleptic attributes in dry fermented sausages[J]. Food Science and Human Wellness, 2021, 10(1): 13-22. DOI:10.1016/j.fshw.2020.05.012.
HAN J R, KONG T, WANG Q, et al. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: a review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(25): 7564-7583. DOI:10.1080/10408398.2022.2047884.
MARTÍN B, GARRIGA M, HUGAS M, et al. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages[J]. International Journal of Food Microbiology, 2006, 107(2): 148-158. DOI:10.1016/j.ijfoodmicro.2005.08.024.
XU Y S, LI L, XIA W S, et al. The role of microbes in free fatty acids release and oxidation in fermented fish paste[J]. LWT-Food Science and Technology, 2019, 101: 323-330. DOI:10.1016/j.lwt.2018.11.027.
LEROY F, VERLUYTEN J, DE VUYST L. Functional meat starter cultures for improved sausage fermentation[J]. International Journal of Food Microbiology, 2006, 106(3): 270-285. DOI:10.1016/j.ijfoodmicro.2005.06.027.
BEDIA M, MÉNDEZ L, BAÑÓN S. Evaluation of different starter cultures (staphylococci plus lactic acid bacteria) in semi-ripened Salami stuffed in swine gut[J]. Meat Science, 2011, 87(4): 381-386. DOI:10.1016/j.meatsci.2010.11.015.
DING T, LI Y L. Biogenic amines are important indices for characterizing the freshness and hygienic quality of aquatic products: a review[J]. LWT-Food Science and Technology, 2024, 194: 115793. DOI:10.1016/j.lwt.2024.115793.
SAHA TURNA N, CHUNG R, MCINTYRE L. A review of biogenic amines in fermented foods: occurrence and health effects[J]. Heliyon, 2024, 10(2): e24501. DOI:10.1016/j.heliyon.2024.e24501.
PASHANGEH S, SHEKARFOROUSH S S, AMINLARI M, et al. Inhibition of histamine accumulation by novel histamine-degrading species of Staphylococcus sp. isolated from goats and sheep milk[J]. Food Science & Nutrition, 2022, 10(2): 354-362. DOI:10.1002/fsn3.2723.
JEONG D W, LEE B, HER J Y, et al. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development[J]. International Journal of Food Microbiology, 2016, 236: 9-16. DOI:10.1016/j.ijfoodmicro.2016.07.011.
LUQMAN A, NEGA M, NGUYEN M T, et al. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization[J]. Cell Reports, 2018, 22(2): 535-545. DOI:10.1016/j.celrep.2017.12.058.
ANDEREGG J, FISCHER M, DÜRIG J, et al. Detection of biogenic amines and tyramine-producing bacteria in fermented sausages from Switzerland[J]. Journal of Food Protection, 2020, 83(9): 1512-1519. DOI:10.4315/JFP-19-468.
MAH J H, HWANG H J. Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture[J]. Food Control, 2009, 20(9): 796-801. DOI:10.1016/j.foodcont.2008.10.005.
ANSORENA D, MONTEL M C, ROKKA M, et al. Analysis of biogenic amines in northern and southern European sausages and role of flora in amine production[J]. Meat Science, 2002, 61(2): 141-147. DOI:10.1016/S0309-1740(01)00174-7.
WANG H P, SUI Y M, LIU J Q, et al. Screening and evaluating microorganisms with broad-spectrum biogenic amine-degrading ability from naturally fermented dry sausage collected from Northeast China[J]. Meat Science, 2024, 210: 109438. DOI:10.1016/j.meatsci.2024.109438.
ZHENG S S, WANG C Y, HU Y Y, et al. Enhancement of fermented sausage quality driven by mixed starter cultures: elucidating the perspective of flavor profile and microbial communities[J]. Food Research International, 2024, 178: 113951. DOI:10.1016/j.foodres.2024.113951.
WANG J, HOU J N, ZHANG X, et al. Improving the flavor of fermented sausage by increasing its bacterial quality via inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus ycc3[J]. Foods, 2022, 11(5): 736. DOI:10.3390/foods11050736.
LEROY S, LEBERT I, ANDANT C, et al. Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus[J]. International Journal of Food Microbiology, 2020, 326: 108653. DOI:10.1016/j.ijfoodmicro.2020.108653.
CEBRIÁN E, NÚÑEZ F, GÁLVEZ F J, et al. Selection and evaluation of Staphylococcus xylosus as a biocontrol agent against toxigenic moulds in a dry-cured ham model system[J]. Microorganisms, 2020, 8(6): 793. DOI:10.3390/microorganisms8060793.
HU Y Y, ZHANG L, LIU Q, et al. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China[J]. Food Microbiology, 2020, 91: 103505. DOI:10.1016/j.fm.2020.103505.
DOMÍNGUEZ R, MUNEKATA P E, AGREGÁN R, et al. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage[J]. LWT-Food Science and Technology, 2016, 71: 47-53. DOI:10.1016/j.lwt.2016.03.016.
MARCOS B, AYMERICH T, DOLORS GUARDIA M, et al. Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages[J]. Meat Science, 2007, 76(1): 46-53. DOI:10.1016/j.meatsci.2006.09.020.