PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Application of New Microbial Detection Techniques in Meats: An Update

Yinghan XIONG1 Chongyan LI2Ruolin LI2Rao WU2Zhiwei ZHOU2Honghu SUN3Qun SUN1,2 ()
College of Light Industry Science and Engineering, Sichuan University, Chengdu 610064, China
College of Life Sciences, Sichuan University, Chengdu 610064, China
Irradiation Preservation Key Laboratory of Sichuan, Chengdu Institute of Food Inspection, Chengdu 611135, China
Show Author Information

Abstract

Meat is a vital source of protein for consumers worldwide. Microbial spoilage not only leads to economic losses, but also may cause foodborne illnesses. Classical detection techniques are simple to operate but also have some drawbacks such as long detection time and low sensitivity, making them inadequate to meet the demands of modern food safety. With the application of new techniques, microbial detection has seen dramatic improvements in speed, sensitivity, and specificity. This review summaries the advantages and shortcomings of classical microbial detection methods, including culture, immunology, biochemical reaction, polymerase chain reaction (PCR), and fluorescence, and introduces the principles and advantages of new technologies such as high-throughput sequencing, digital PCR (dPCR), matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), infrared spectroscopy, Raman spectroscopy, and hyperspectroscopy. Future prospects for their application in food safety testing are also explored, aiming to provide technical support for improving meat safety monitoring.

CLC number: TS251.1 Document code: A Article ID: 1001-8123(2025)02-0046-09

References

[1]
Organisation for Economic Co-operation and Development and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2024—2033[R]. Paris, France and Rome: OECD and FAO, 2024.
[2]
Food and Agriculture Organization of the United Nations. FAO platform on food loss and waste[R]. Rome: FAO, 2024.
[3]
World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007—2015[R]. Geneva: WHO, 2015.
[4]

LI W W, PIRES S M, LIU Z T, et al. Surveillance of foodborne disease outbreaks in China, 2003—2017[J]. Food Control, 2020, 118: 107359. DOI:10.1016/j.foodcont.2020.107359.

[5]

FODDAI A C G, GRANT I R. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4281-4288. DOI:10.1007/s00253-020-10542-x.

[6]

PORTILHO A I, GIMENES LIMA G, DE GASPARI E. Enzyme-linked immunosorbent assay: an adaptable methodology to study SARS-CoV-2 humoral and cellular immune responses[J]. Journal of Clinical Medicine, 2022, 11(6): 1503. DOI:10.3390/jcm11061503.

[8]
CHAUHAN A, JINDAL T. Biochemical and molecular methods for bacterial identification[M]//CHAUHAN A, JINDAL T. Microbiological methods for environment, food and pharmaceutical analysis. Cham: Springer International Publishing, 2020: 425-468. DOI:10.1007/978-3-030-52024-3_10.
[9]

HEO E J, SONG B R, PARK H J, et al. Rapid detection of Listeria monocytogenes by real-time PCR in processed meat and dairy products[J]. Journal of Food Protection, 2014, 77(3): 453-458. DOI:10.4315/0362-028X.JFP-13-318.

[11]

LIU Z N, ZHONG Y H, HU Y, et al. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness[J]. Food Chemistry, 2019, 270: 573-578. DOI:10.1016/j.foodchem.2018.07.041.

[12]

SATAM H, JOSHI K, MANGROLIA U, et al. Next-generation sequencing technology: current trends and advancements[J]. Biology, 2023, 12(7): 997. DOI:10.3390/biology12070997.

[13]

WANG Q, HAN Y Y, ZHANG T J, et al. Whole-genome sequencing of Escherichia coli from retail meat in China reveals the dissemination of clinically important antimicrobial resistance genes[J]. International Journal of Food Microbiology, 2024, 415: 110634. DOI:10.1016/j.ijfoodmicro.2024.110634.

[14]

DE MATOS L G, DA SILVA ABREU A C, ALONSO V P P, et al. Comparison of bacterial diversity in wet- and dry-aged beef using traditional microbiology and next generation sequencing[J]. The Microbe, 2024, 2: 100035. DOI:10.1016/j.microb.2024.100035.

[15]

PARK J, BAE D, KIM S A. Microbial trace investigation throughout the entire chicken supply chain based on metagenomic high-throughput sequencing[J]. Food Research International, 2023, 169: 112775. DOI:10.1016/j.foodres.2023.112775.

[17]

SANCHA DOMINGUEZ L, COTOS SUÁREZ A, SÁNCHEZ LEDESMA M, et al. Present and future applications of digital PCR in infectious diseases diagnosis[J]. Diagnostics, 2024, 14(9): 931. DOI:10.3390/diagnostics14090931.

[19]

ÖZ Y Y, SÖNMEZ Ö İ, KARAMAN S, et al. Rapid and sensitive detection of Salmonella spp. in raw minced meat samples using droplet digital PCR[J]. European Food Research and Technology, 2020, 246(10): 1895-1907. DOI:10.1007/s00217-020-03531-x.

[20]

KONG J Q, FAN C C, LIAO X J, et al. Accurate detection of Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium based on the combination of next-generation sequencing and droplet digital PCR[J]. LWT-Food Science and Technology, 2022, 168: 113913. DOI:10.1016/j.lwt.2022.113913.

[21]

SUO Y J, YIN W H, ZHU Q Y, et al. A specific and sensitive aptamer-based digital PCR chip for Salmonella typhimurium detection[J]. Biosensors, 2022, 12(7): 458. DOI:10.3390/bios12070458.

[22]

BRAZELTON DE CÁRDENAS J N, HAYDEN R T. Applications of digital PCR in clinical microbiology[J]. Advanced Techniques in Diagnostic Microbiology, 2018, 2: 685-698. DOI:10.1007/978-3-319-95111-9_29.

[23]

LIN S, ZHANG X, TIAN A N, et al. Boron nitride nanoplate-based strand exchange amplification with enhanced sensitivity and rapidity for quantitative detection of Staphylococcus aureus in food samples[J]. Analytical Methods, 2024, 16(6): 892-898. DOI:10.1039/d3ay02076b.

[24]

DENG J, LI Y, SHI W Q, et al. Primer design strategy for denaturation bubble-mediated strand exchange amplification[J]. Analytical Biochemistry, 2020, 593: 113593. DOI:10.1016/j.ab.2020.113593.

[25]

ZHANG M L, WANG X D, HAN L Z, et al. Rapid detection of foodborne pathogen Listeria monocytogenes by strand exchange amplification[J]. Analytical Biochemistry, 2018, 545: 38-42. DOI:10.1016/j.ab.2018.01.013.

[26]

LIU C Y, SHI C, LI M Z, et al. Rapid and simple detection of viable foodborne pathogen Staphylococcus aureus[J]. Frontiers in Chemistry, 2019, 7: 124. DOI:10.3389/fchem.2019.00124.

[27]

ZHANG J, HAN X N, WANG Y, et al. Rapid and sensitive detection of Staphylococcus aureus via an all-in-one staggered strand exchange amplification platform[J]. Analyst, 2023, 148(9): 1970-1977. DOI:10.1039/D2AN02092K.

[29]

SINGHAL N, KUMAR M, KANAUJIA P K, et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis[J]. Frontiers in Microbiology, 2015, 6: 791. DOI:10.3389/fmicb.2015.00791.

[30]

SENG P, DRANCOURT M, GOURIET F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clinical Infectious Diseases, 2009, 49(4): 543-551. DOI:10.1086/600885.

[31]

SAPUGAHAWATTE D N, LI C, ZHU C, et al. Prevalence and characteristics of extended-spectrum-β-lactamase-producing and carbapenemase-producing enterobacteriaceae from freshwater fish and pork in wet markets of Hong Kong[J]. mSphere, 2020, 5(2): 00107-20. DOI:10.1128/msphere.00107-20.

[32]

WANG C, EL-TELBANY M, LIN Y Z, et al. Identification of Enterococcus spp. from food sources by matrix-assisted laser desorption ionization-time of flight mass spectrometry and characterization of virulence factors, antibiotic resistance, and biofilm formation[J]. International Journal of Food Microbiology, 2024, 420: 110768. DOI:10.1016/j.ijfoodmicro.2024.110768.

[33]

ASHFAQ M Y, DA’NA D A, AL-GHOUTI M A. Application of MALDI-TOF MS for identification of environmental bacteria: a review[J]. Journal of Environmental Management, 2022, 305: 114359. DOI:10.1016/j.jenvman.2021.114359.

[34]

ZHANG J H, LI F W, SHEN S X, et al. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: a review[J]. Food Chemistry, 2023, 416: 135726. DOI:10.1016/j.foodchem.2023.135726.

[35]

SHAPAVAL V, SCHMITT J, MØRETRØ T, et al. Characterization of food spoilage fungi by FTIR spectroscopy[J]. Journal of Applied Microbiology, 2013, 114(3): 788-796. DOI:10.1111/jam.12092.

[36]

CHENG J H, SUN D W. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle[J]. Food Engineering Reviews, 2017, 9(1): 36-49. DOI:10.1007/s12393-016-9147-1.

[37]

ZHANG Z P, SUN Y, SANG S Y, et al. Emerging approach for fish freshness evaluation: principle, application and challenges[J]. Foods, 2022, 11(13): 1897. DOI:10.3390/foods11131897.

[38]

ZHANG F, KANG T H, SUN J F, et al. Improving TVB-N prediction in pork using portable spectroscopy with just-in-time learning model updating method[J]. Meat Science, 2022, 188: 108801. DOI:10.1016/j.meatsci.2022.108801.

[40]

JAAFREH S, VALLER O, KREYENSCHMIDT J, et al. In vitro discrimination and classification of microbial flora of poultry using two dispersive Raman spectrometers (microscope and Portable Fiber-Optic systems) in tandem with chemometric analysis[J]. Talanta, 2019, 202: 411-425. DOI:10.1016/j.talanta.2019.04.082.

[41]

LIU Q S, DONG P C, FENGOU L C, et al. Preliminary investigation into the prediction of indicators of beef spoilage using Raman and Fourier transform infrared spectroscopy[J]. Meat Science, 2023, 200: 109168. DOI:10.1016/j.meatsci.2023.109168.

[42]

WANG K Q, YUE Z L, LIN H, et al. Rapid classification of the freshness grades of sea bass (Lateolabrax japonicus) fillets using a portable Raman spectrometer with machine learning method[J]. Microchemical Journal, 2023, 192: 108948. DOI:10.1016/j.microc.2023.108948.

[43]

LIU S J, ZHU Y D, ZHAO L J, et al. Characteristic substance analysis and rapid detection of bacteria spores in cooked meat products by surface enhanced Raman scattering based on Ag@AuNP array substrate[J]. Analytica Chimica Acta, 2024, 1308: 342616. DOI:10.1016/j.aca.2024.342616.

[44]

WANG Y M, FANG L R, WANG Y H, et al. Current trends of Raman spectroscopy in clinic settings: opportunities and challenges[J]. Advanced Science, 2024, 11(7): e2300668. DOI:10.1002/advs.202300668.

[45]

ELMASRY G, KAMRUZZAMAN M, SUN D W, et al. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(11): 999-1023. DOI:10.1080/10408398.2010.543495.

[46]

SONI A, DIXIT Y, REIS M M, et al. Hyperspectral imaging and machine learning in food microbiology: developments and challenges in detection of bacterial, fungal, and viral contaminants[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(4): 3717-3745. DOI:10.1111/1541-4337.12983.

[47]

LU G L, FEI B W. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 2014, 19(1): 10901. DOI:10.1117/1.JBO.19.1.010901.

[48]

LI H H, KUTSANEDZIE F, ZHAO J W, et al. Quantifying total viable count in pork meat using combined hyperspectral imaging and artificial olfaction techniques[J]. Food Analytical Methods, 2016, 9(11): 3015-3024. DOI:10.1007/s12161-016-0475-9.

[49]

ZHAO J X, MEHMOOD A, DONG Q L, et al. Rapid assessment of chilled chicken spoilage based on hyperspectral imaging technology and AdaBoost-RT[J]. Food Analytical Methods, 2023, 16(9): 1504-1511. DOI:10.1007/s12161-023-02501-9.

[50]

QIU R C, ZHAO Y L, KONG D D, et al. Development and comparison of classification models on VIS-NIR hyperspectral imaging spectra for qualitative detection of the Staphylococcus aureus in fresh chicken breast[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285: 121838. DOI:10.1016/j.saa.2022.121838.

Meat Research
Pages 46-54
Cite this article:
XIONG Y, LI C, LI R, et al. Application of New Microbial Detection Techniques in Meats: An Update. Meat Research, 2025, 39(2): 46-54. https://doi.org/10.7506/rlyj1001-8123-20240902-228
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return