PDF (2.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Effect and Mechanism of Functional Sweetener on Obesity: A Review

Liping GAN Yifeng ZHAOTu HONGYongqi ZHOUXin ZHAOWeihao HUANGLiuying SHIYilei LI
College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
Show Author Information

Abstract

Obesity has become a serious threat to human health, with excessive intake of sugar being one of the major causes of obesity. Therefore, replacing high-calorie sugar with low-calorie functional sweeteners or sugar substituents is a popular dietary choice for the prevention and management of obesity. However, the relationship between functional sweeteners and obesity is complex, and no definitive conclusion has been reached. This is because the effect of functional sweeteners is influenced by various factors, including the type and dosage of functional sweetener, as well as individual differences such as gender, health status and gut microbiota composition. In this article, we review the effect of common functional sweeteners on energy metabolism, fat metabolism and the gut microbiota in the body. Furthermore, we summarize the current studies on the effect and mechanism of functional sweeteners on obesity hoping to provide a reference for better selection or application of foods and beverages containing non-nutritional sweeteners in the future.

CLC number: TS202.3 Document code: A Article ID: 1002-6630(2024)09-0252-09

References

[1]

MAHMOUD A M. An overview of epigenetics in obesity: the role of lifestyle and therapeutic interventions[J]. International Journal of Molecular Sciences, 2022, 23(3): 1341. DOI:10.3390/ijms23031341.

[2]

WU Y, LI Y, GIOVANNUCCI E. Potential impact of time trend of lifestyle risk factors on burden of major gastrointestinal cancers in China[J]. Gastroenterology, 2021, 161(6): 1830-1841. DOI:10.1053/j.gastro.2021.08.006.

[3]

FARUQUE S, TONG J, LACMANOVIC V, et al. The dose makes the poison: sugar and obesity in the United States: a review[J]. Polish Journal of Food and Nutrition Sciences, 2019, 69(3): 219-233. DOI:10.31883/pjfns/110735.

[4]

STEFAN N, BIRKENFELD A L, SCHULZE M B, et al. Obesity and impaired metabolic health in patients with COVID-19[J]. Nature Reviews: Endocrinology, 2020, 16(7): 341-342. DOI:10.1038/s41574-020-0364-6.

[5]

YU L, ZHANG X, YE S, et al. Obesity and COVID-19: mechanistic insights from adipose tissue[J]. Journal of Clinical Endocrinology and Metabolism, 2022, 107(7): 1799-1811. DOI:10.1210/clinem/dgac137.

[6]

MALIK V S, POPKIN B M, BRAY G A, et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a metaanalysis[J]. Diabetes Care, 2010, 33(11): 2477-2483. DOI:10.2337/dc10-1079.

[7]

SONG M Y. Sugar intake and cancer risk: when epidemiologic uncertainty meets biological plausibility[J]. American Journal of Clinical Nutrition, 2020, 112(5): 1155-1156. DOI:10.1093/ajcn/nqaa261.

[8]

HIRAI S, MIWA H, TANAKA T, et al. High-sucrose diets contribute to brain angiopathy with impaired glucose uptake and psychosisrelated higher brain dysfunctions in mice[J]. Science Advances, 2021, 7(46): eabl6077. DOI:10.1126/sciadv.abl6077.

[9]

LEE S H, CHOE S Y, SEO G G, et al. Can “functional sweetener” context increase liking for cookies formulated with alternative sweeteners?[J]. Foods, 2021, 10(2): 361. DOI:10.3390/foods10020361.

[11]

SYLVETSKY A C, ROTHER K I. Trends in the consumption of lowcalorie sweeteners[J]. Physiology and Behavior, 2016, 164: 446-450. DOI:10.1016/j.physbeh.2016.03.030.

[12]

FERNSTROM J D. Non-nutritive sweeteners and obesity[J]. Annual Review of Food Science and Technology, 2015, 6: 119-136. DOI:10.1146/annurev-food-022814-015635.

[13]

BARRIOS-CORREA A A, ESTRADA J A, MARTEL C, et al. Chronic intake of commercial sweeteners induces changes in feeding behavior and signaling pathways related to the control of appetite in BALB/ c mice[J]. BioMed Research International, 2018, 2018: 3628121. DOI:10.1155/2018/3628121.

[14]

ZHAO L P. The gut microbiota and obesity: from correlation to causality[J]. Nature Reviews: Microbiology, 2013, 11(9): 639-647. DOI:10.1038/nrmicro3089.

[15]

GENG J F, NI Q Q, SUN W, et al. The links between gut microbiota and obesity and obesity related diseases[J]. Biomedicine and Pharmacotherapy, 2022, 147: 112678. DOI:10.1016/j.biopha.2022.112678.

[17]

ICEK S S. Structure-dependent activity of plant-derived sweeteners[J]. Molecules, 2020, 25(8): 1946. DOI:10.3390/molecules25081946.

[18]

PEARLMAN M, OBERT J, CASEY L. The association between artificial sweeteners and obesity[J]. Current Gastroenterology Reports, 2017, 19(12): 64. DOI:10.1007/s11894-017-0602-9.

[19]

JIAO H W, XIE H W, ZHANG L B, et al. Loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(4): e2021516118. DOI:10.1073/pnas.2021516118.

[20]

VON MOLITOR E, RIEDEL K, KROHN M, et al. Sweet taste is complex: signaling cascades and circuits involved in sweet sensation[J]. Frontiers in Human Neuroscience, 2021, 15: 667709. DOI:10.3389/fnhum.2021.667709.

[21]

TEMUSSI P. The history of sweet taste: not exactly a piece of cake[J]. Journal of Molecular Recognition, 2006, 19(3): 188-199. DOI:10.1002/jmr.767.

[22]

VENDITTI C, MUSA-VELOSO K, LEE H Y, et al. Determinants of sweetness preference: a scoping review of human studies[J]. Nutrients, 2020, 12(3): 718. DOI:10.3390/nu12030718.

[23]

CHANDRASHEKAR J, HOON M A, RYBA N J, et al. The receptors and cells for mammalian taste[J]. Nature, 2006, 444: 288-294. DOI:10.1038/nature05401.

[24]

FERNSTROM J D, MUNGER S D, SCLAFANI A, et al. Mechanisms for sweetness[J]. Journal of Nutrition, 2012, 142(6): 1134-1141. DOI:10.3945/jn.111.149567.

[25]

JANG J, KIM S K, GUTHRIE B, et al. Synergic effects in the activation of the sweet receptor GPCR heterodimer for various sweeteners predicted using molecular metadynamics simulations[J]. Journal of Agricultural and Food Chemistry, 2021, 69(41): 12250-12261. DOI:10.1021/acs.jafc.1c03779.

[26]

ZHAO G Q, ZHANG Y, HOON M A, et al. The receptors for mammalian sweet and umami taste[J]. Cell, 2003, 115: 255-266. DOI:10.1016/s0092-8674(03)00844-4.

[28]

BUCHANAN K L, RUPPRECHT L E, KAELBERER M M, et al. The preference for sugar over sweetener depends on a gut sensor cell[J]. Nature Neuroscience, 2022, 25(2): 190-200. DOI:10.1038/s41593-021-00982-7.

[29]

MAGNUSON B A, CARAKOSTAS M C, MOORE N H, et al. Biological fate of low-calorie sweeteners[J]. Nutrition Reviews, 2016, 74(11): 670-689. DOI:10.1093/nutrit/nuw032.

[30]

ROBERTS A, RENWICK A G, SIMS J, et al. Sucralose metabolism and pharmacokinetics in man[J]. Food and Chemical Toxicology, 2000, 38(Suppl 2): 31-41. DOI:10.1016/s0278-6915(00)00026-0.

[31]

SWEATMAN T W, RENWICK A G. The tissue distribution and pharmacokinetics of saccharin in the rat[J]. Toxicology and Applied Pharmacology, 1980, 55(1): 18-31. DOI:10.1016/0041-008x(80)90215-x.

[32]

GOMEZ-FERNANDEZ A R, SANTACRUZ A, JACOBOVELAZQUEZ D A. The complex relationship between metabolic syndrome and sweeteners[J]. Journal of Food Science, 2021, 86(5): 1511-1531. DOI:10.1111/1750-3841.15709.

[33]

MURALI A, GIRI V, CAMERON H J, et al. Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats[J]. Food and Chemical Toxicology, 2022, 165: 113123. DOI:10.1016/j.fct.2022.113123.

[34]

PURKAYASTHA S, MARKOSYAN A, PRAKASH I, et al. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate[J]. Regulatory Toxicology and Pharmacology, 2016, 77: 125-133. DOI:10.1016/j.yrtph.2016.02.015.

[36]

SHI Q, CAI L, JIA H, et al. Low intake of digestible carbohydrates ameliorates duodenal absorption of carbohydrates in mice with glucose metabolism disorders induced by artificial sweeteners[J]. Journal of the Science of Food and Agriculture, 2019, 99(11): 4952-4962. DOI:10.1002/jsfa.9727.

[37]

MEYER-GERSPACH A C, BIESIEKIERSKI J R, DELOOSE E, et al. Effects of caloric and noncaloric sweeteners on antroduodenal motility, gastrointestinal hormone secretion and appetite-related sensations in healthy subjects[J]. American Journal of Clinical Nutrition, 2018, 107: 707-716. DOI:10.1093/ajcn/nqy004.

[38]

YUNKER A G, ALVES J M, LUO S, et al. Obesity and sex-related associations with differential effects of sucralose vs sucrose on appetite and reward processing: a randomized crossover trial[J]. JAMA Network Open, 2021, 4(9): e2126313. DOI:10.1001/jamanetworkopen.2021.26313.

[39]

STEINERT R E, FREY F, TOPFER A, et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides[J]. British Journal of Nutrition, 2011, 105(9): 1320-1328. DOI:10.1017/S000711451000512X.

[40]

ORKU S E, SUYEN G, BAS M. The effect of regular consumption of four low-or no-calorie sweeteners on glycemic response in healthy women: a randomized controlled trial[J]. Nutrition, 2022, 106: 111885. DOI:10.1016/j.nut.2022.111885.

[41]

YOON H S, CHO C H, YUN M S, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J]. Nature Microbiology, 2021, 6(5): 563-573. DOI:10.1038/s41564-021-00880-5.

[42]

FANTINO M, FANTINO A, MATRAY M, et al. Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, nonobese French adults[J]. Appetite, 2018, 125: 557-565. DOI:10.1016/j.appet.2018.03.007.

[43]

SORENSEN L B, VASILARAS T H, ASTRUP A, et al. Sucrose compared with artificial sweeteners: a clinical intervention study of effects on energy intake, appetite, and energy expenditure after 10 wk of supplementation in overweight subjects[J]. American Journal of Clinical Nutrition, 2014, 100(1): 36-45. DOI:10.3945/ajcn.113.081554.

[44]

MCGLYNN N D, KHAN T A, WANG L, et al. Association of low-and no-calorie sweetened beverages as a replacement for sugar-sweetened beverages with body weight and cardiometabolic risk: a systematic review and meta-analysis[J]. JAMA Netw Open, 2022, 5(3): e222092. DOI:10.1001/jamanetworkopen.2022.2092.

[45]

O’CONNOR D, PANG M, CASTELNUOVO G, et al. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults[J]. Food & Function, 2021, 12(2): 442-465. DOI:10.1039/d0fo02424d.

[46]

MORALES-RIOS E I, GARCIA-MACHORRO J, BRIONESARANDA A, et al. Effect of long-term intake of nutritive and nonnutritive sweeteners on metabolic health and cognition in adult male rats[J]. Journal of Medicinal Food, 2022, 25(11): 1059-1065. DOI:10.1089/jmf.2022.0016.

[47]

LÜ K, SONG X W, ZHANG P, et al. Effects of Siraitia grosvenorii extracts on high fat diet-induced obese mice: a comparison with artificial sweetener aspartame[J]. Food Science and Human Wellness, 2022, 11(4): 865-873. DOI:10.1016/j.fshw.2022.03.009.

[48]

JAHANGIR CHUGHTAI M F, PASHA I, ZAHOOR T, et al. Nutritional and therapeutic perspectives of Stevia rebaudiana as emerging sweetener: a way forward for sweetener industry[J]. CyTAJournal of Food, 2020, 18(1): 164-177. DOI:10.1080/19476337.2020.1721562.

[49]

BIAN X M, CHI L, GAO B, et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice[J]. PLoS ONE, 2017, 12(6): e0178426. DOI:10.1371/journal.pone.0178426.

[50]

SUEZ J, KOREM T, ZEEVI D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota[J]. Nature, 2014, 514: 181-186. DOI:10.1038/nature13793.

[51]

BORDIER V, TEYSSEIRE F, SCHLOTTERBECK G, et al. Effect of a chronic intake of the natural sweeteners xylitol and erythritol on glucose absorption in humans with obesity[J]. Nutrients, 2021, 13(11): 3950. DOI:10.3390/nu13113950.

[52]

MA J, CHANG J, CHECKLIN H L, et al. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects[J]. British Journal of Nutrition, 2010, 104(6): 803-806. DOI:10.1017/S0007114510001327.

[53]

MOVAHEDIAN M, GOLZAN S A, ASHTARY-LARKY D, et al. The effects of artificial-and stevia-based sweeteners on lipid profile in adults: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(21): 5063-5079. DOI:10.1080/10408398.2021.2012641.

[55]

MITSUTOMI K, MASAKI T, SHIMASAKI T, et al. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity[J]. Metabolism: Clinical and Experimental, 2014, 63(1): 69-78. DOI:10.1016/j.metabol.2013.09.002.

[58]

GAN L, WANG J, GUO Y. Polysaccharides influence human health via microbiota-dependent and -independent pathways[J]. Frontiers in Nutrition, 2022, 9: 1030063. DOI:10.3389/fnut.2022.1030063.

[59]

LIN C H, LI H Y, WANG S H, et al. Consumption of non-nutritive sweetener, acesulfame potassium exacerbates atherosclerosis through dysregulation of lipid metabolism in ApoE-/-mice[J]. Nutrients, 2021, 13: 3984. DOI:10.3390/nu13113984.

[60]

PANDURANGAN M, PARK J, KIM E. Aspartame downregulates 3T3-L1 differentiation[J]. In Vitro Cellular and Developmental Biology: Animal, 2014, 50(9): 851-857. DOI:10.1007/s11626-014-9789-3.

[61]

JANSSENS S, CIAPAITE J, WOLTERS J C, et al. An in vivo magnetic resonance spectroscopy study of the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats[J]. Nutrients, 2017, 9(5): 476. DOI:10.3390/nu9050476.

[62]

KUNDU N, DOMINGUES C C, PATEL J, et al. Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells[J]. Stem Cell Research & Therapy, 2020, 11(1): 250. DOI:10.1186/s13287-020-01753-0.

[63]

AZAD M B, ARCHIBALD A, TOMCZYK M M, et al. Non-nutritive sweetener consumption during pregnancy affects adiposity in mouse and human offspring[J]. International Journal of Obesity, 2020, 44: 2137-2148.

[64]

SIMON B R, PARLEE S D, LEARMAN B S, et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors[J]. Journal of Biological Chemistry, 2013, 288(45): 32475-32489. DOI:10.1074/jbc.M113.514034.

[65]

PARK M, BAEK H, HAN J Y, et al. Stevioside enhances the antiadipogenic effect and beta-oxidation by activating AMPK in 3T3-L1 cells and epididymal adipose tissues of db/db mice[J]. Cells, 2022, 11(7): 1076. DOI:10.3390/cells11071076.

[66]

JIA C H, ZHANG J Y, SHEN W, et al. Attenuation of high-fat dietinduced fatty liver through PPARα activation by stevioside[J]. Journal of Functional Foods, 2019, 57: 392-398. DOI:10.1016/j.jff.2019.04.034.

[67]

PARK M, SHARMA A, BAEK H, et al. Stevia and stevioside attenuate liver steatosis through PPARalpha-mediated lipophagy in db/db mice hepatocytes[J]. Antioxidants, 2022, 11(12): 2496. DOI:10.3390/antiox11122496.

[68]

KIM E, LIM S M, KIM M S, et al. Phyllodulcin, a natural sweetener, regulates obesity-related metabolic changes and fat browning-related genes of subcutaneous white adipose tissue in high-fat diet-induced obese mice[J]. Nutrients, 2017, 9(10): 1049. DOI:10.3390/nu9101049.

[69]

CAMPOS V, DESPLAND C, BRANDEJSKY V, et al. Sugar-and artificially sweetened beverages and intrahepatic fat: a randomized controlled trial[J]. Obesity, 2015, 23(12): 2335-2339. DOI:10.1002/oby.21310.

[70]

PARLEE S D, SIMON B R, SCHELLER E L, et al. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females[J]. Endocrinology, 2014, 155(4): 1313-1326. DOI:10.1210/en.2013-1995.

[71]

AZAD M B, ARCHIBALD A, TOMCZYK M M, et al. Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells[J]. International Journal of Obesity, 2020, 44(10): 2137-2148. DOI:10.1038/s41366-020-0575-x.

[72]

AZAD M B, ABOU-SETTA A M, CHAUHAN B F, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies[J]. CMAJ: Canadian Medical Association Journal, 2017, 189(28): E929-E939. DOI:10.1503/cmaj.161390.

[73]

GERARD P. Gut microbiota and obesity[J]. Cellular and Molecular Life Sciences, 2016, 73(1): 147-162. DOI:10.1007/s00018-015-2061-5.

[74]

TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457: 480-484. DOI:10.1038/nature07540.

[75]

TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesityassociated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444: 1027-1031. DOI:10.1038/nature05414.

[76]

LAVILLE E, PERRIER J, BEJAR N, et al. Investigating host microbiota relationships through functional metagenomics[J]. Frontiers in Microbiology, 2019, 10: 1286. DOI:10.3389/fmicb.2019.01286.

[77]

DE DIOS R, PROCTOR C R, MASLOVA E, et al. Artificial sweeteners inhibit multidrug-resistant pathogen growth and potentiate antibiotic activity[J]. EMBO Molecular Medicine, 2023, 15(1): e16397. DOI:10.15252/emmm.202216397.

[78]

CORDER B, KNOBBE A. The effects of the artificial sweetener sucralose on the gut bacteria Escherichia coli and Enterobacter aerogenes[J]. The Journal of Experimental Microbiology & Immunology, 2018, 4: 1-9.

[79]

HARRINGTON V, LAU L, CRITS-CHRISTOPH A, et al. Interactions of non-nutritive artificial sweeteners with the microbiome in metabolic syndrome[J]. Immunometabolism, 2022, 4(2): e220012. DOI:10.20900/immunometab20220012.

[80]

NETTLETON J E, CHO N A, KLANCIC T, et al. Maternal lowdose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring[J]. Gut, 2020, 69: 1807-1817. DOI:10.1136/gutjnl-2018-317505.

[81]

OLIVIER-VAN STICHELEN S, ROTHER K I, HANOVER J A. Maternal exposure to non-nutritive sweeteners impacts progeny’s metabolism and microbiome[J]. Frontiers in Microbiology, 2019, 10: 1360. DOI:10.3389/fmicb.2019.01360.

[82]

SERRANO J, SMITH K R, CROUCH A L, et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice[J]. Microbiome, 2021, 9(1): 11. DOI:10.1186/s40168-020-00976-w.

[83]

NETTLETON J E, KLANCIC T, SCHICK A, et al. Low-dose stevia (rebaudioside A) consumption perturbs gut microbiota and the mesolimbic dopamine reward system[J]. Nutrients, 2019, 11(6): 1248. DOI:10.3390/nu11061248.

[84]

SANCHEZ-TAPIA M, MILLER A W, GRANADOS-PORTILLO O, et al. The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet[J]. Gut Microbes, 2020, 12(1): 1801301. DOI:10.1080/19490976.2020.1801301.

[85]

ZHANG M, CHEN J, YANG M, et al. Low doses of sucralose alter fecal microbiota in high-fat diet-induced obese rats[J]. Frontiers in Nutrition, 2021, 8: 787055. DOI:10.3389/fnut.2021.787055.

[86]

MÉNDEZ-GARCÍA L A, BUENO-HERNÁNDEZ N, CIDSOTO M A, et al. Ten-week sucralose consumption induces gut dysbiosis and altered glucose and insulin levels in healthy young adults[J]. Microorganisms, 2022, 10(2): 434. DOI:10.3390/microorganisms10020434.

[87]

BIAN X, CHI L, GAO B, et al. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice[J]. Frontiers in Physiology, 2017, 8: 487. DOI:10.3389/fphys.2017.00487.

[88]

WANG W, NETTLETON J E, GANZLE M G, et al. A metagenomics investigation of intergenerational effects of non-nutritive sweeteners on gut microbiome[J]. Frontiers in Nutrition, 2021, 8: 795848. DOI:10.3389/fnut.2021.795848.

[89]

SYLVETSKY A C, SEN S, MERKEL P, et al. Consumption of diet soda sweetened with sucralose and acesulfame-potassium alters inflammatory transcriptome pathways in females with overweight and obesity[J]. Molecular Nutrition & Food Research, 2020, 64(11): e1901166. DOI:10.1002/mnfr.201901166.

[90]

ZANI F, BLAGIH J, GRUBER T, et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses[J]. Nature, 2023, 615: 705-711. DOI:10.1038/s41586-023-05801-6.

[91]

WITKOWSKI M, NEMET I, ALAMRI H, et al. The artificial sweetener erythritol and cardiovascular event risk[J]. Nature Medicine, 2023, 29(3): 710-718. DOI:10.1038/s41591-023-02223-9.

Food Science
Pages 252-260
Cite this article:
GAN L, ZHAO Y, HONG T, et al. Effect and Mechanism of Functional Sweetener on Obesity: A Review. Food Science, 2024, 45(9): 252-260. https://doi.org/10.7506/spkx1002-6630-20230310-102
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return