Breast milk is the safest and most perfect natural food for infant growth and development. As one of the most important components in breast milk, the milk fat globule membrane (MFGM) is a 3-layer membrane structure surrounding milk fat globules (MFG). This unique structure not only maintains the stability of milk but also plays an important role in the digestive and metabolic processes of infants. In this article, we introduce the reader to the composition and structural specificity of MFGM, review the sequential digestion of MFGM depending on several enzymes in the mouth, stomach and intestine of healthy infants, and elaborate on the interaction mechanism between MFGM and various enzymes, in order to provide a reference for relevant studies.
LYONS K E, RYAN C A, DEMPSEY E M, et al. Breast milk, a source of beneficial microbes and associated benefits for infant health[J]. Nutrients, 2020, 12(4): 1039. DOI:10.3390/nu12041039.
ARGOV-ARGAMAN N. Symposium review: milk fat globule size: practical implications and metabolic regulation[J]. Journal of Dairy Science, 2019, 102(3): 2783-2795. DOI:10.3168/jds.2018-15240.
SARKAR A, GOH K K, SINGH R P, et al. Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model[J]. Food Hydrocolloids, 2009, 23(6): 1563-1569. DOI:10.1016/j.colsurfb.2013.05.034.
HARUTA-ONO Y, UENO H, UEDA N, et al. Investigation into the dosage of dietary sphingomyelin concentrate in relation to the improvement of epidermal function in hairless mice[J]. Animal Science Journal, 2012, 83(2): 178-183. DOI:10.1111/j.1740-0929.2011.00940.
CHAURIO R A, JANKO C, MUÑOZ L E, et al. Phospholipids: key players in apoptosis and immune regulation[J]. Molecules, 2009, 14(12): 4892-4914. DOI:10.3390/molecules14124892.
SPRONG R, HULSTEIN M, VAN DER MEER R. Bovine milk fat components inhibit food-borne pathogens[J]. International Dairy Journal, 2002, 12(2/3): 209-215. DOI:10.1016/s0958-6946(01)00139-x.
NOH S K, KOO S I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats[J]. The Journal of Nutrition, 2004, 134(10): 2611-2616. DOI:10.1093/jn/134.10.2611.
MCDANIEL M A, MAIER S F, EINSTEIN G O. “Brain-specific”nutrients: a memory cure?[J]. Nutrition, 2003, 19(11/12): 957-975. DOI:10.1016/s0899-9007(03)00024-8.
AHN Y J, GANESAN P, KWAK H S. Composition, structure, and bioactive components in milk fat globule membrane[J]. Food Science of Animal Resources, 2011, 31(1): 1-8. DOI:10.5851/kosfa.2011.31.1.001.
DUAN R D, CHENG Y, JÖNSSON B A, et al. Human meconium contains significant amounts of alkaline sphingomyelinase, neutral ceramidase, and sphingolipid metabolites[J]. Pediatric Research, 2007, 61(1): 61-66. DOI:10.1203/01.pdr.0000250534.92934.c2.
PAIK J H, CHAE S S, LEE M J, et al. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of αvβ3-and β1-containing integrins[J]. Journal of Biological Chemistry, 2001, 276(15): 11830-11837. DOI:10.1074/jbc.m009422200.
SPIEGEL S, MILSTIEN S. The outs and the ins of sphingosine-1-phosphate in immunity[J]. Nature Reviews Immunology, 2011, 11(6): 403-415. DOI:10.1038/nri2974.
LOPEZ C, MADEC M N, JIMENEZ-FLORES R. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins[J]. Food Chemistry, 2010, 120(1): 22-33. DOI:10.1016/j.foodchem.2009.09.065.
SPRONG R C, HULSTEIN M F, VAN DER MEER R. Bactericidal activities of milk lipids[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(4): 1298-1301. DOI:10.1128/aac.45.4.1298-1301.2001.
VANCE D E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis[J]. Current Opinion in Lipidology, 2008, 19(3): 229-234. DOI:10.1097/mol.0b013e3282fee935.
KIDD P. Phospholipids: versatile nutraceuticals for functional foods[J]. Journal of Nutraceuticals Functional & Medical Foods, 2002.
CARLSON S E, MONTALTO M B, PONDER D L, et al. Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids[J]. Pediatric Research, 1998, 44(4): 491-498. DOI:10.1203/00006450-199810000-00005.
NAKAMURA S I, KIYOHARA Y, JINNAI H, et al. Mammalian phospholipase D: phosphatidylethanolamine as an essential component[J]. Proceedings of the National Academy of Sciences, 1996, 93(9): 4300-4304. DOI:10.1073/pnas.93.9.4300.
RAJKUMAR K, NICHITA A, ANOOR P K, et al. Understanding perspectives of signalling mechanisms regulating PEBP1 function[J]. Cell Biochemistry and Function, 2016, 34(6): 394-403. DOI:10.1002/cbf.3198.
VANCE J E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids[J]. Journal of Lipid Research, 2008, 49(7): 1377-1387. DOI:10.1194/jlr.r700020-jlr200.
KINGSLEY M I, MILLER M, KILDUFF L P, et al. Effects of phosphatidylserine on exercise capacity during cycling in active males[J]. Medicine and Science in Sports and Exercise, 2006, 38(1): 64. DOI:10.1249/01.mss.0000183195.10867.d0.
KIMURA A K, KIM HY. Phosphatidylserine synthase 2: high efficiency for synthesizing phosphatidylserine containing docosahexaenoic acid[J]. Journal of Lipid Research, 2013, 54(1): 214-222. DOI:10.1194/jlr.M031989.
GUERIN J, BURGAIN J, GOMAND F, et al. Milk fat globule membrane glycoproteins: valuable ingredients for lactic acid bacteria encapsulation?[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(4): 639-651. DOI:10.1080/10408398.2017.1386158.
VAN RENSBURG C, JOONE G, O’SULLIVAN J, et al. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids[J]. Antimicrobial Agents and Chemotherapy, 1992, 36(12): 2729-2735. DOI:10.1128/AAC.36.12.2729.
EL-LOLY, MOHAMED. Composition, properties and nutritional aspects of milk fat globule membrane: a review[J]. Polish Journal of Food & Nutrition Sciences, 2011, 61(1): 7-32. DOI:10.2478/v10222-011-0001-0.
ABAD M, RUIZ C, MARTINEZ D, et al. Seasonal variations of lipid classes and fatty acids in flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain)[J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1995, 110(2): 109-118. DOI:10.1016/0742-8413(95)00006-A.
ABO-HASHEMA K A, CAKE M H, POWER G W, et al. Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases[J]. Journal of Biological Chemistry, 1999, 274(50): 35577-35582. DOI:10.1074/jbc.274.50.35577.
COLEMAN R A, MASHEK D G. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling[J]. Chemical Reviews, 2011, 111(10): 6359-6386. DOI:10.1021/cr100404w.
EICHMANN T O, LASS A. DAG tales: the multiple faces of diacylglycerol-stereochemistry, metabolism, and signaling[J]. Cellular and Molecular Life Sciences, 2015, 72(20): 3931-3952. DOI:10.1007/s00018-015-1982-3.
KANOH H, YAMADA K, SAKANE F. Diacylglycerol kinase: a key modulator of signal transduction?[J]. Trends in Biochemical Sciences, 1990, 15(2): 47-50. DOI:10.1016/0968-0004(90)90172-8.
BOUIC P J. Sterols and sterolins: new drugs for the immune system?[J]. Drug Discovery Today, 2002, 7(14): 775-778. DOI:10.1016/S1359-6446(02)02343-7.
SPITSBERG V. Invited review: bovine milk fat globule membrane as a potential nutraceutical[J]. Journal of Dairy Science, 2005, 88(7): 2289-2294. DOI:10.3168/jds.S0022-0302(05)72906-4.
LINDMARK-MÅNSSON H, ÅKESSON B. Antioxidative factors in milk[J]. British Journal of Nutrition, 2000, 84(Suppl 1): 103-110. DOI:10.1017/s0007114500002324.
SEN C K, KHANNA S, ROY S. Tocotrienols: vitamin E beyond tocopherols[J]. Life Sciences, 2006, 78(18): 2088-2098. DOI:10.1016/j.lfs.2005.12.001.
DEWETTINCK K, ROMBAUT R, THIENPONT N, et al. Nutritional and technological aspects of milk fat globule membrane material[J]. International Dairy Journal, 2008, 18(5): 436-457. DOI:10.1016/j.idairyj.2007.10.014.
GIUFFRIDA F, CRUZ-HERNANDEZ C, FLÜCK B, et al. Quantification of phospholipids classes in human milk[J]. Lipids, 2013, 48(10): 1051-1058. DOI:10.1007/s11745-013-3825-z.
TAI P, GOLDING M, SINGH H, et al. The bovine milk fat globule membrane-liquid ordered domain formation and anticholesteremic effects during digestion[J]. Food Reviews International, 2023, 39(7): 4061-4087. DOI:10.1080/87559129.2021.2015773.
RATNAYAKE W N, GALLI C. Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism[J]. Annals of Nutrition & Metabolism, 2009, 55(1/2/3): 8-43. DOI:10.1159/000228994.
BAKER L Y, HOBBY C R, SIV A W, et al. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence[J]. BMC Microbiology, 2018, 18(1): 1-12. DOI:10.1186/s12866-018-1259-8.
HENGGE R. Linking bacterial growth, survival, and multicellularity-small signaling molecules as triggers and drivers[J]. Current Opinion in Microbiology, 2020, 55: 57-66. DOI:10.1016/j.mib.2020.02.007.
AFFOLTER M, GRASS L, VANROBAEYS F, et al. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome[J]. Journal of Proteomics, 2010, 73(6): 1079-1088. DOI:10.1016/j.jprot.2009.11.008.
KVISTGAARD A, PALLESEN L, ARIAS C, et al. Inhibitory effects of human and bovine milk constituents on rotavirus infections[J]. Journal of Dairy Science, 2004, 87(12): 4088-4096. DOI:10.3168/jds.S0022-0302(04)73551-1.
LI Y, WU J, NIU Y, et al. Milk fat globule membrane inhibits NLRP3 inflammasome activation and enhances intestinal barrier function in a rat model of short bowel[J]. Journal of Parenteral and Enteral Nutrition, 2019, 43(5): 677-685. DOI:10.1002/jpen.1435.
LI H, LI L, CHEN H, et al. The structure and properties of MFG-E8 and the in vitro assessment of its toxic effects on myoblast cells[J]. Protein Expression and Purification, 2021, 178: 105720. DOI:10.1016/j.pep.2020.105720.
ZANABRIA R, TELLEZ A, GRIFFITHS M, et al. Modulation of immune function by milk fat globule membrane isolates[J]. Journal of Dairy Science, 2014, 97(4): 2017-2026. DOI:10.3168/jds.2013-7563.
MANA P, GOODYEAR M, BERNARD C, et al. Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin[J]. International Immunology, 2004, 16(3): 489-499. DOI:10.1093/intimm/dxh049.
GUGGENMOS J, SCHUBART A S, OGG S, et al. Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis[J]. The Journal of Immunology, 2004, 172(1): 661-668. DOI:10.4049/jimmunol.172.1.661.
JOHNS T G, BERNARD C C. The structure and function of myelin oligodendrocyte glycoprotein[J]. Journal of Neurochemistry, 1999, 72(1): 1-9. DOI:10.1046/j.1471-4159.1999.0720001.
STEFFERL A, SCHUBART A, STORCH M, et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis[J]. The Journal of Immunology, 2000, 165(5): 2859-2865. DOI:10.4049/jimmunol.165.5.2859.
VOJDANI A, CAMPBELL A W, ANYANWU E, et al. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A[J]. Journal of Neuroimmunology, 2002, 129(1/2): 168-177. DOI:10.1016/S0165-5728(02)00180-7.
ARNETT H A, VINEY J L. Immune modulation by butyrophilins[J]. Nature Reviews Immunology, 2014, 14(8): 559-569. DOI:10.1038/nri3715.
HARRISON R. Physiological roles of xanthine oxidoreductase[J]. Drug Metabolism Reviews, 2004, 36(2): 363-375. DOI:10.1081/dmr-120037569.
FONG B Y, NORRIS C S, MACGIBBON A K. Protein and lipid composition of bovine milk-fat-globule membrane[J]. International Dairy Journal, 2007, 17(4): 275-288. DOI:10.1016/j.idairyj.2006.05.004.
PATTON S, GENDLER S J, SPICER A P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1995, 1241(3): 407-423. DOI:10.1016/0304-4157(95)00014-3.
MCAULEY J L, LINDEN S K, PNG C W, et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection[J]. The Journal of Clinical Investigation, 2007, 117(8): 2313-2324. DOI:10.1172/jci26705.
THUM C, YOUNG W, MONTOYA C A, et al. In vitro fermentation of digested milk fat globule membrane from ruminant milk modulates piglet ileal and caecal microbiota[J]. Frontiers in Nutrition, 2020, 7: 91. DOI:10.3389/fnut.2020.00091.
RICCIO P. The proteins of the milk fat globule membrane in the balance[J]. Trends in Food Science & Technology, 2004, 15(9): 458-461. DOI:10.1016/j.tifs.2003.12.005.
LINDSEY M L, JUNG M, YABLUCHANSKIY A, et al. Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality[J]. Cardiovascular Research, 2019, 115(2): 395-408. DOI:10.1093/cvr/cvy211.
MATHER I H. A review and proposed nomenclature for major proteins of the milk-fat globule membrane[J]. Journal of Dairy Science, 2000, 83(2): 203-247. DOI:10.3168/jds.S0022-0302(00)74870-3.
FINK I R, BENARD E L, HERMSEN T, et al. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp[J]. Molecular Immunology, 2015, 63(2): 381-393. DOI:10.1016/j.molimm.2014.09.010.
RATH E M, DUFF A P, HÅKANSSON A P, et al. Structure and potential cellular targets of HAMLET-like anti-cancer compounds made from milk components[J]. Journal of Pharmacy & Pharmaceutical Sciences, 2015, 18(4): 773-824. DOI:10.18433/j3g60c.
KUCHENBAECKER K B, HOPPER J L, BARNES D R, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers[J]. The Journal of the American Medical Association, 2017, 317(23): 2402. DOI:10.1001/jama.2017.7112.
YARDEN R I, PARDO-REOYO S, SGAGIAS M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage[J]. Nature Genetics, 2002, 30(3): 285-289. DOI:10.1038/ng837.
VENKITARAMAN A R. Tumour suppressor mechanisms in the control of chromosome stability: insights from BRCA2[J]. Molecules and Cells, 2014, 37(2): 95. DOI:10.14348/molcells.2014.2346.
CAMPAGNA S, MATHOT A G, FLEURY Y, et al. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone[J]. Journal of Dairy Science, 2004, 87(6): 1621-1626. DOI:10.3168/jds.S0022-0302(04)73316-0.
ZHAO L, DU M, GAO J, et al. Label-free quantitative proteomic analysis of milk fat globule membrane proteins of yak and cow and identification of proteins associated with glucose and lipid metabolism[J]. Food Chemistry, 2019, 275: 59-68. DOI:10.1016/j.foodchem.2018.09.044.
WANG X, HIRMO S, WILLEN R, et al. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model[J]. Journal of Medical Microbiology, 2001, 50(5): 430-435. DOI:10.1099/0022-1317-50-5-430.
MOSS M, FREED D. The cow and the coronary: epidemiology, biochemistry and immunology[J]. International Journal of Cardiology, 2003, 87(2/3): 203-216. DOI:10.1016/S0167-5273(02)00201-2.
CHAKRABORTY S, KAUR S, GUHA S, et al. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2012, 1826(1): 129-169. DOI:10.1016/j.bbcan.2012.03.008.
SERRA-PAGES C, MEDLEY Q G, TANG M, et al. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins[J]. Journal of Biological Chemistry, 1998, 273(25): 15611-15620. DOI:10.1074/jbc.273.25.15611.
NISHINO T, NISHINO T. The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene[J]. Journal of Biological Chemistry, 1997, 272(47): 29859-29864. DOI:10.1074/jbc.272.47.29859.
EVERS J M. The milkfat globule membrane-compositional and structural changes post secretion by the mammary secretory cell[J]. International Dairy Journal, 2004, 14(8): 661-674. DOI:10.1016/j.idairyj.2004.01.005.
MÜLLER G A. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface[J]. Archives of Biochemistry and Biophysics, 2018, 656: 1-18. DOI:10.1016/j.abb.2018.08.009.
MILARD M, LAUGERETTE F, DURAND A, et al. Milk polar lipids in a high-fat diet can prevent body weight gain: modulated abundance of gut bacteria in relation with fecal loss of specific fatty acids[J]. Molecular Nutrition & Food Research, 2019, 63(6): 1970010. DOI:10.1002/mnfr.201970010.
DEWETTINCK K, ROMBAUT R, THIENPONT N. Nutritional and technological aspects of milk fat globule membrane material[J]. International Dairy Journal, 2008, 18(5): 436-457. DOI:10.1016/j.idairyj.2007.10.014.
HUR S J, LIM B O, DECKER E A, et al. In vitro human digestion models for food applications[J]. Food Chemistry, 2011, 125(1): 1-12. DOI:10.1016/j.foodchem.2010.08.036.
SENSOY I. A review on the food digestion in the digestive tract and the used in vitro models[J]. Current Research in Food Science, 2021, 4: 308-319. DOI:10.1016/j.crfs.2021.04.004.
SCHIPPER R G, SILLETTI E, VINGERHOEDS M H. Saliva as research material: biochemical, physicochemical and practical aspects[J]. Archives of Oral Biology, 2007, 52(12): 1114-1135. DOI:10.1016/j.archoralbio.2007.06.009.
MEYNIER A, GENOT C. Molecular and structural organization of lipids in foods: their fate during digestion and impact in nutrition[J]. Oléagineux, Corps Gras, Lipides, 2017, 24(2): np. DOI:10.1051/ocl/2017006.
KAWAI T, FUSHIKI T. Importance of lipolysis in oral cavity for orosensory detection of fat[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2003, 285(2): R447-R454. DOI:10.1152/ajpregu.00729.2002.
BOEHLKE C, ZIERAU O, HANNIG C. Salivary amylase-the enzyme of unspecialized euryphagous animals[J]. Archives of Oral Biology, 2015, 60(8): 1162-1176. DOI:10.1016/j.archoralbio.2015.05.008.
SILLETTI E, VINGERHOEDS M H, NORDE W, et al. The role of electrostatics in saliva-induced emulsion flocculation[J]. Food Hydrocolloids, 2007, 21(4): 596-606. DOI:10.1016/j.foodhyd.2006.07.004.
DIMA C, ASSADPOUR E, DIMA S, et al. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 2862-2884. DOI:10.1111/1541-4337.12623.
BERNBÄCK S, BLÄCKBERG L, HERNELL O. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase[J]. The Journal of Clinical Investigation, 1990, 85(4): 1221-1226. DOI:10.1172/JCI114556.
FAVÉ G, LÉVÊQUE C, PEYROT J, et al. Modulation of gastric lipolysis by the phospholipid specie: link to specific lipasephospholipid interaction at the lipid/water interface?[J]. The FASWB Journal, 2007, 21(6): A1010. DOI:10.1096/fasebj.21.6.A1010-a.
BOURLIEU C, PABOEUF G, CHEVER S, et al. Adsorption of gastric lipase onto multicomponent model lipid monolayers with phase separation[J]. Colloids and Surfaces B: Biointerfaces, 2016, 143: 97-106. DOI:10.1016/j.colsurfb.2016.03.032.
VAN AKEN G A. Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities?[J]. Food Biophysics, 2010, 5(4): 258-283. DOI:10.1007/s11483-010-9160-5.
ARMAND M. Lipases and lipolysis in the human digestive tract: Where do we stand?[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2007, 10(2): 156-164. DOI:10.1097/MCO.0b013e3280177687.
ZHU X, YE A, VERRIER T, et al. Free fatty acid profiles of emulsified lipids during in vitro digestion with pancreatic lipase[J]. Food Chemistry, 2013, 139(1/2/3/4): 398-404. DOI:10.1016/j.foodchem.2012.12.060.
HUSSAIN, MAHMOOD M. Intestinal lipid absorption and lipoprotein formation[J]. Current Opinion in Lipidology, 2014, 25(3): 200. DOI:10.1097/mol.0000000000000084.
HUSSAIN M M. Intestinal lipid absorption and lipoprotein formation[J]. Current Opinion in Lipidology, 2014, 25(3): 200. DOI:10.1097/mol.0000000000000084.
MANSON W, COWARD W, HARDING M, et al. Development of fat digestion in infancy[J]. Archives of Disease in Childhood-Fetal and Neonatal Edition, 1999, 80(3): F183-F187. DOI:10.1136/fn.80.3.F183.
GALLIER S, SHAW E, LAUBSCHER A, et al. Adsorption of bile salts to milk phospholipid and phospholipid-protein monolayers[J]. Journal of Agricultural and Food Chemistry, 2014, 62(6): 1363-1372. DOI:10.1021/jf404448d.
WANG Y, LI M, HOU J, et al. Design, synthesis and properties evaluation of emulsified viscosity reducers with temperature tolerance and salt resistance for heavy oil[J]. Journal of Molecular Liquids, 2022, 356(15): 356. DOI:10.1016/j.molliq.2022.118977.
BELLE V, FOURNEL A, WOUDSTRA M, et al. Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy[J]. Biochemistry, 2007, 46(8): 2205-2214. DOI:10.1021/bi0616089.
LEBENTHAL E, LEE P, HEITLINGER L A. Impact of development of the gastrointestinal tract on infant feeding[J]. The Journal of Pediatrics, 1983, 102(1): 1-9. DOI:10.1016/s0022-3476(83)80276-5.
HAGEMAN J H, DANIELSEN M, NIEUWENHUIZEN A G, et al. Comparison of bovine milk fat and vegetable fat for infant formula: implications for infant health[J]. International Dairy Journal, 2019, 92: 37-49. DOI:10.1016/j.idairyj.2019.01.005.
BORGSTRÖM B. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes[J]. Gastroenterology, 1980, 78(5): 954-962. DOI:10.1016/0016-5085(80)90777-5.
GARCIA C, ANTONA C, ROBERT B, et al. The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion[J]. Food Hydrocolloids, 2014, 35: 494-504. DOI:10.1016/j.foodhyd.2013.07.005.
ZHANG R, ZHANG Z, ZHANG H, et al. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: in vitro digestion study[J]. Food Research International, 2015, 75: 71-78. DOI:10.1016/j.foodres.2015.05.014.
HE X, MCCLORRY S, HERNELL O, et al. Digestion of human milk fat in healthy infants[J]. Nutrition Research, 2020, 83: 15-29. DOI:10.1016/j.nutres.2020.08.002.
BORGSTRÖM B, LINDQUIST B, LUNDH G. Enzyme concentration and absorption of protein and glucose in duodenum of premature infants[J]. AMA Journal of Diseases of Children, 1960, 99(3): 338-343. DOI:10.1002/aic.690060439.
VANDERGHEM C, FRANCIS F, DANTHINE S, et al. Study on the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins[J]. International Dairy Journal, 2011, 21(5): 312-318. DOI:10.1016/j.idairyj.2010.12.006.
MATHER I H, KEENAN T. Studies on the structure of milk fat globule membrane[J]. The Journal of Membrane Biology, 1975, 21(1): 65-85. DOI:10.1007/bf01941062.
EL-LOLY M M. Composition, properties and nutritional aspects of milk fat globule membrane: a review[J]. Polish Journal of Food and Nutrition Sciences, 2011, 61(1): 7-32. DOI:10.2478/v10222-011-0001-0.