pH, NaCl and temperature are important process parameters for the manufacturing of soybean protein isolate (SPI). pH and NaCl affect protein aggregation by modifying the surface charge and electrostatic repulsion, whereas temperature affects protein aggregation by changing the surface hydrophobicity and/or disulfide bonding, which in turn changes the particle size and compactness and then the rheology and downstream application characteristics of SPI. This paper reviews the effects and possible mechanisms of pH, NaCl, and temperature on the denaturation, aggregation, and rheological properties of SPI and its components glycinin and β-conglycinin with respect to interaction, thermal stability, degree of aggregation, and gelling properties. The relationship between the degree of protein aggregation, gel strand thickness, gel strand curvature and gel network continuity and gel strength is discussed, and the differences among the effects of pH, NaCl and temperature on protein aggregation are summarized for the purpose of providing an assistance in regulating the degree of SPI aggregation by preparation parameters.
ZHANG Y Y, ZHOU F, ZHAO M, et al. Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability[J]. Food Hydrocolloids, 2018, 74: 62-71. DOI:10.1016/j.foodhyd.2017.07.021.
ZHANG S T, SHI Y, ZHANG S L, et al. Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation[J]. Food Control, 2014, 41: 1-6. DOI:10.1016/j.foodcont.2013.12.026.
ZHONG M M, SUN Y F, SUN Y, et al. Dynamic gastric stability and in vitro lipid digestion of soybean protein isolate and three storage protein-stabilized emulsions: effects of ultrasonic treatment[J]. Food Research International, 2021, 149: 110666. DOI:10.1016/j.foodres.2021.110666.
LIU S, ZHANG M, FENG F, et al. Toward a “green revolution” for soybean[J]. Molecular Plant, 2020, 13(5): 688-697. DOI:10.1016/j.molp.2020.03.002.
ZHU X Q, ZENG J H, SUN B Y, et al. Extraction, conformation characteristics and functional properties of soybean lipophilic proteins[J]. Food Bioscience, 2022, 49: 101907. DOI:10.1016/j.fbio.2022.101907.
DIN J U, SARWAR A, LI Y, et al. Separation of storage proteins (7S and 11S) from soybean seed, meals and protein isolate using an optimized method via comparison of yield and purity[J]. Protein Journal, 2021, 40(3): 396-405. DOI:10.1007/s10930-021-09990-9.
SHI R J, LI T, LI M, et al. Consequences of dynamic high-pressure homogenization pretreatment on the physicochemical and functional characteristics of citric acid-treated whey protein isolate[J]. LWT-Food Science and Technology, 2021, 136: 110303. DOI:10.1016/j.lwt.2020.110303.
ZHU Y, FU S Y, WU C L, et al. The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties[J]. Food Hydrocolloids, 2020, 103: 105709. DOI:10.1016/j.foodhyd.2020.105709.
KIM M J, SHIN W S. Structural and functional modification of proteins from black soybean aquasoya via ultrasonication[J]. Ultrasonics Sonochemistry, 2022, 91: 106220. DOI:10.1016/j.ultsonch.2022.106220.
XU H N, LIU Y, ZHANG L F. Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties[J]. Soft Matter, 2015, 11(29): 5926-5932. DOI:10.1039/c5sm00954e.
LIU Q, GENG R, ZHAO J Y, et al. Structural and gel textural properties of soy protein isolate when subjected to extreme acid pH-shifting and mild heating processes[J]. Journal of Agricultural and Food Chemistry, 2015, 63(19): 4853-4861. DOI:10.1021/acs.jafc.5b01331.
NISHINARI K, FANG Y, GUO S, et al. Soy proteins: a review on composition, aggregation and emulsification[J]. Food Hydrocolloids, 2014, 39: 301-318. DOI:10.1016/j.foodhyd.2014.01.013.
PREECE K E, HOOSHYAR N, ZUIDAM N J. Whole soybean protein extraction processes: a review[J]. Innovative Food Science & Emerging Technologies, 2017, 43: 163-172. DOI:10.1016/j.ifset.2017.07.024.
ASHAOLU T J. Applications of soy protein hydrolysates in the emerging functional foods: a review[J]. International Journal of Food Science and Technology, 2020, 55(2): 421-428. DOI:10.1111/ijfs.14380.
ZHENG L, REGENSTEIN J M, ZHOU L Y, et al. Soy protein isolates: a review of their composition, aggregation, and gelation[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(2): 1940-1957. DOI:10.1111/1541-4337.12925.
VALENZUELA C, ABUGOCH L L, TAPIA C, et al. Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation[J]. International Journal of Food Science and Technology, 2013, 48(4): 843-849. DOI:10.1111/ijfs.12035.
RUIZ G A, XIAO W K, VAN BOEKEL M, et al. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)[J]. Food Chemistry, 2016, 209: 203-210. DOI:10.1016/j.foodchem.2016.04.052.
TIAN Y, TAHA A, ZHANG P P, et al. Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of β-conglycinin[J]. Food Hydrocolloids, 2021, 118: 106784. DOI:10.1016/j.foodhyd.2021.106784.
CHEN N N, ZHAO M M, NIEPCERON F, et al. The effect of the pH on thermal aggregation and gelation of soy proteins[J]. Food Hydrocolloids, 2017, 66: 27-36. DOI:10.1016/j.foodhyd.2016.12.006.
PAN M Z, MENG X J, JIANG L Z, et al. Effect of cosolvents (polyols) on structural and foaming properties of soy protein isolate[J]. Czech Journal of Food Sciences, 2017, 35(1): 57-66. DOI:10.17221/35/2016-cjfs.
O’FLYNN T D, HOGAN S A, DALY D F M, et al. Rheological and solubility properties of soy protein isolate[J]. Molecules, 2021, 26(10): 3015. DOI:10.3390/molecules26103015.
NIU H L, XIA X F, WANG C, et al. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating[J]. Food Chemistry, 2018, 242: 188-195. DOI:10.1016/j.foodchem.2017.09.055.
RENKEMA J M S, GRUPPEN H, VAN VLIET T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J]. Journal of Agricultural and Food Chemistry, 2002, 50(21): 6064-6071. DOI:10.1021/jf020061b.
RENKEMA J M S, LAKEMOND C M M, JONGH H H J D, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins[J]. Journal of Biotechnology, 2000, 79(3): 223-230. DOI:10.1016/S0168-1656(00)00239-X.
RENKEMA J M S, KNABBEN J, VAN VLIET T. Gel formation by β-conglycinin and glycinin and their mixtures[J]. Food Hydrocolloids, 2001, 15(4/5/6): 407-414. DOI:10.1016/S0268-005X(01)00051-0.
NAGANO T, MORI H, NISHINARI K. Rheological properties and conformational states of β-conglycinin gels at acidic pH[J]. Biopolymers, 1994, 34(2): 293-298. DOI:10.1002/bip.360340215.
LAKEMOND C M M, DE JONGH H H J, PAQUES M, et al. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids, 2003, 17(3): 365-377. DOI:10.1016/s0268-005x(02)00100-5.
LAKEMOND C M M, DE JONGH H H J, HESSING M, et al. Heat denaturation of soy glycinin: influence of pH and ionic strength on molecular structure[J]. Journal of Agricultural and Food Chemistry, 2000, 48(6): 1991-1995. DOI:10.1021/jf9908704.
LAKEMOND C M M, DE JONGH H H J, HESSING M, et al. Soy glycinin: influence of pH and ionic strength on solubility and molecular structure at ambient temperatures[J]. Journal of Agricultural and Food Chemistry, 2000, 48(6): 1985-1990. DOI:10.1021/jf9908695.
PETRUCCELLI S, ANON M C. Thermal aggregation of soy protein isolates[J]. Journal of Agricultural and Food Chemistry, 1995, 43(12): 3035-3041. DOI:10.1021/jf00060a009.
ULLAH I, KHODER R M, YIN T, et al. Gelation properties of tofu induced by different coagulants: effects of molecular interactions between nano-sized okara dietary fiber and soybean proteins[J]. Food Chemistry, 2023, 403: 134056. DOI:10.1016/j.foodchem.2022.134056.
YANG J J, DOU J J, ZHU B, et al. Multi-dimensional analysis of heat-induced soybean protein hydrolysate gels subjected to ultrasound-assisted pH pretreatment[J]. Ultrasonics Sonochemistry, 2023, 95: 106403. DOI:10.1016/j.ultsonch.2023.106403.
WU C, HUA Y F, CHEN Y M, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids, 2017, 66: 389-395. DOI:10.1016/j.foodhyd.2016.12.007.
GUO J, YANG X Q, HE X T, et al. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0[J]. Journal of Agricultural and Food Chemistry, 2012, 60(14): 3782-3791. DOI:10.1021/jf300409y.
ZHANG Q, WANG C Z, LI B Y, et al. Research progress in tofu processing: from raw materials to processing conditions[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(9): 1448-1467. DOI:10.1080/10408398.2016.1263823.
HU Y, HE C X, WOO M, et al. Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance[J]. Food & Function, 2019, 10(12): 8106-8115. DOI:10.1039/c9fo00961b.
CHITI F, DOBSON C M. Amyloid formation by globular proteins under native conditions[J]. Nature Chemical Biology, 2009, 5(1): 15-22. DOI:10.1038/nchembio.131.
WU C, MA W C, CHEN Y M, et al. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size[J]. LWT-Food Science and Technology, 2019, 103: 125-130. DOI:10.1016/j.lwt.2018.12.064.
BREMER L G B, VAN VLIET T, WALSTRA P. Theoretical and experimental study of the fractal nature of the structure of casein gels[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(10): 3359-3372. DOI:10.1039/F19898503359.
MELLEMA M. Scaling relations between structure and rheology of ageing casein particle gels[M]. Netherlands: Wageningen University, 2000: 113-114.
LOVEDAY S M, WANG X L, RAO M A, et al. β-Lactoglobulin nanofibrils: effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions[J]. Food Hydrocolloids, 2012, 27(1): 242-249. DOI:10.1016/j.foodhyd.2011.07.001.
MEHALEBI S, NICOLAI T, DURAND D. Light scattering study of heat-denatured globular protein aggregates[J]. International Journal of Biological Macromolecules, 2008, 43(2): 129-135. DOI:10.1016/j.ijbiomac.2008.04.002.
SORGENTINI D A, WAGNER J R. Comparative study of structural characteristics and thermal behavior of whey and isolate soybean proteins[J]. Journal of Food Biochemistry, 1999, 23(5): 489-507. DOI:10.1111/j.1745-4514.1999.tb00033.x.
LIU F, TANG C H. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(37): 8888-8898. DOI:10.1021/jf401859y.
LI X H, CHENG Y H, YI C P, et al. Effect of ionic strength on the heat-induced soy protein aggregation and the phase separation of soy protein aggregate/dextran mixtures[J]. Food Hydrocolloids, 2009, 23(3): 1015-1023. DOI:10.1016/j.foodhyd.2008.07.024.
ABHYANKAR A R, MULVIHILL D M, AUTY M A E. Combined microscopic and dynamic rheological methods for studying the structural breakdown properties of whey protein gels and emulsion filled gels[J]. Food Hydrocolloids, 2011, 25(3): 275-282. DOI:10.1016/j.foodhyd.2010.05.012.
WU C, NAVICHA W B, HUA Y F, et al. Effects of removal of non-network protein on the rheological properties of heat-induced soy protein gels[J]. LWT-Food Science and Technology, 2018, 95: 193-199. DOI:10.1016/j.lwt.2018.04.077.
BRITO-OLIVEIRA T C, CAVINI A C M, FERREIRA L S, et al. Microstructural and rheological characterization of NaCl-induced gels of soy protein isolate and the effects of incorporating different galactomannans[J]. Food Structure, 2020, 26: 100158. DOI:10.1016/j.foostr.2020.100158.
JI F Y, XU J J, OUYANG Y Y, et al. Effects of NaCl concentration and temperature on fibrillation, structure, and functional properties of soy protein isolate fibril dispersions[J]. LWT-Food Science and Technology, 2021, 149: 111862. DOI:10.1016/j.lwt.2021.111862.
MUNIALO C D, MARTIN A H, VAN DER LINDEN E, et al. Fibril formation from pea protein and subsequent gel formation[J]. Journal of Agricultural and Food Chemistry, 2014, 62(11): 2418-2427. DOI:10.1021/jf4055215.
ZHENG L, TENG F, WANG N, et al. Addition of salt ions before spraying improves heat-and cold-induced gel properties of soy protein isolate(SPI)[J]. Applied Sciences, 2019, 9(6): 1076-1091. DOI:10.3390/app9061076.
CHEN N N, CHASSENIEUX C, NICOLAI T. Kinetics of NaCl induced gelation of soy protein aggregates: effects of temperature, aggregate size, and protein concentration[J]. Food Hydrocolloids, 2018, 77: 66-74. DOI:10.1016/j.foodhyd.2017.09.021.
PUPPO M C, ANON M C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH[J]. Journal of Agricultural and Food Chemistry, 1998, 46(9): 3583-3589. DOI:10.1021/jf980006w.
CHEN N N, ZHAO J L, CHASSENIEUX C M, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids, 2017, 70: 88-95. DOI:10.1016/j.foodhyd.2017.03.024.
DEAK N A, JOHNSON L A. Effects of extraction temperature and preservation method on functionality of soy protein[J]. Journal of the American Oil Chemists’ Society, 2007, 84(3): 259-268. DOI:10.1007/s11746-007-1035-7.
RICKERT D A, JOHNSON L A, MURPHY P A. Functional properties of improved glycinin and beta-conglycinin fractions[J]. Journal of Food Science, 2004, 69(4): C303-C311. DOI:10.1111/j.1365-2621.2004.tb06332.x.
HE Z Y, LI W W, GUO F X, et al. Foaming characteristics of commercial soy protein isolate as influenced by heat-induced aggregation[J]. International Journal of Food Properties, 2015, 18(8): 1817-1828. DOI:10.1080/10942912.2014.946046.
ZHANG J Y, WANG J, LI M D, et al. Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content[J]. Food Research International, 2022, 155: 111115. DOI:10.1016/j.foodres.2022.111115.
YANG Y, WANG Z J, WANG R, et al. Secondary structure and subunit composition of soy protein in vitro digested by pepsin and its relation with digestibility[J]. BioMed Research International, 2016, 2016: 5498639. DOI:10.1155/2016/5498639.
NAGANO T, AKASAKA T, NISHINARI K. Study on the heat-induced conformational changes of β-conglycinin by FTIR and CD analysis[J]. Food Hydrocolloids, 1995, 9(2): 83-89. DOI:10.1016/s0268-005x(09)80269-5.
JU Q, YUAN Y Q, WU C, et al. Heat-induced aggregation of subunits/polypeptides of soybean protein: structural and physicochemical properties[J]. Food Chemistry, 2023, 405(Part A): 134774. DOI:10.1016/j.foodchem.2022.134774.
XI J, YAO L L, CHEN H B. The effects of thermal treatments on the antigenicity and structural properties of soybean glycinin[J]. Journal of Food Biochemistry, 2021, 45(9): 13874. DOI:10.1111/jfbc.13874.
HE X T, YUAN D B, WANG J M, et al. Thermal aggregation behaviour of soy protein: characteristics of different polypeptides and sub-units[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1121-1131. DOI:10.1002/jsfa.7184.
MIRIANI M, CORREDIG M, IAMETTI S, et al. Denaturation of soy proteins in solution and at the oil-water interface: a fluorescence study[J]. Food Hydrocolloids, 2011, 25(4): 620-626. DOI:10.1016/j.foodhyd.2010.07.020.
NOBUYUKI M, TOMOYUKI K, YUSUKE W, et al. The roles of the N-linked glycans and extension regions of soybean β-conglycinin in folding, assembly and structural features[J]. European Journal of Biochemistry, 1998, 258(2): 854-862. DOI:10.1046/j.1432-1327.1998.2580854.x.
MO X Q, ZHONG Z K, WANG D H, et al. Soybean glycinin subunits: characterization of physicochemical and adhesion properties[J]. Journal of Agricultural and Food Chemistry, 2006, 54(20): 7589-7593. DOI:10.1021/jf060780g.
GUO FX, XIONG Y L, QIN F, et al. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses[J]. Journal of Food Science, 2015, 80(2): C279-C287. DOI:10.1111/1750-3841.12761.
JIANG Y Q, WANG Z J, HE Z Y, et al. Effect of heat-induced aggregation of soy protein isolate on protein-glutaminase deamidation and the emulsifying properties of deamidated products[J]. LWT-Food Science and Technology, 2022, 154: 112328. DOI:10.1016/j.lwt.2021.112328.
SHEN Q, XIONG T, ZHENG W, et al. The effects of thermal treatment on emulsifying properties of soy protein isolates: interfacial rheology and quantitative proteomic analysis[J]. Food Research International, 2022, 157: 111326. DOI:10.1016/j.foodres.2022.111326.
UTSUMI S, DAMODARAN S, KINSELLA J E. Heat-induced interactions between soybean proteins: preferential association of 11S basic subunits and. beta. subunits of 7S[J]. Journal of Agricultural and Food Chemistry, 1984, 32(6): 1406-1412. DOI:10.1021/jf00126a047.
SORGENTINI D A, WAGNER J R, ANON M C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions[J]. Journal of Agricultural and Food Chemistry, 1995, 43(9): 2471-2479. DOI:10.1021/jf00057a029.
YUAN D B, YANG X Q, TANG C H, et al. Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin[J]. Food Research International, 2009, 42(5/6): 700-706. DOI:10.1016/j.foodres.2009.02.005.
MILLS E C, HUANG L, NOEL T R, et al. Formation of thermally induced aggregates of the soya globulin β-conglycinin[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001, 1547(2): 339-350. DOI:10.1016/S0167-4838(01)00199-6.
MARUYAMA N, SALLEH M, TAKAHASHI K, et al. Structure-physicochemical function relationships of soybean β-conglycinin heterotrimers[J]. Journal of Agricultural and Food Chemistry, 2002, 50(12): 4323-4326. DOI:10.1021/jf0117053.
SOKOLOVA A, KEALLEY C S, HANLEY T, et al. Small-angle X-ray scattering study of the effect of pH and salts on 11S soy glycinin in the freeze-dried powder and solution states[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 967-974. DOI:10.1021/jf902349q.
XIAO J, SHI C, ZHANG L, et al. Multilevel structural responses of β-conglycinin and glycinin under acidic or alkaline heat treatment[J]. Food Research International, 2016, 89(1): 540-548. DOI:10.1016/j.foodres.2016.09.006.
WANG J M, NAVICHA W B, NA X K, et al. Preheat-induced soy protein particles with tunable heat stability[J]. Food Chemistry, 2021, 336: 127624. DOI:10.1016/j.foodchem.2020.127624.
WANG J M, XIA N, YANG X Q, et al. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3302-3310. DOI:10.1021/jf205128v.
WU C, MA W C, HUA Y F. The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heat-induced soy protein gels as affected by heating time and temperature[J]. International Journal of Food Science and Technology, 2019, 54(1): 231-239. DOI:10.1111/ijfs.13931.
NAGANO T, AKASAKA T, NISHINARI K. Dynamic viscoelastic properties of glycinin and β-conglycinin gels from soybeans[J]. Biopolymers, 1994, 34(10): 1303-1309. DOI:10.1002/bip.360341003.
LI X F, CHEN L Y, HUA Y F, et al. Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins[J]. Food Hydrocolloids, 2020, 105: 105846. DOI:10.1016/j.foodhyd.2020.105846.
NAGANO T, HIROTSUKA M, MORI H, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans[J]. Journal of Agricultural and Food Chemistry, 1992, 40(6): 941-944. DOI:10.1021/jf00018a004.
NAGANO T, MORI H, NISHINARI K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans[J]. Journal of Agricultural and Food Chemistry, 1994, 42(7): 1415-1419. DOI:10.1021/jf00043a005.
RENKEMA J M S, VAN VLIET T. Heat-induced gel formation by soy proteins at neutral pH[J]. Journal of Agricultural and Food Chemistry, 2002, 50(6): 1569-1573. DOI:10.1021/jf010763l.
SLETMOEN M, GEISSLER E, STOKKE B T. Determination of molecular parameters of linear and circular scleroglucan coexisting in ternary mixtures using light scattering[J]. Biomacromolecules, 2006, 7(3): 858-865. DOI:10.1021/bm050990m.