This study aimed to clarify the oxidative damage in human skin fibroblasts (HSF) treated with trimethylamine oxide (TMAO) and to elucidate its pro-aging effect in skin cells in terms of antioxidant indicators, levels of inflammatory cytokines, levels of collagen and matrix metalloproteinases, and mRNA expression of related genes. The results showed that TMAO treatment significantly increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased the content of reduced glutathione, superoxide dismutase (SOD) activity, and total antioxidant capacity (TAC) in HSF cells (P < 0.05). TMAO treatment was found to significantly elevate the mRNA levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and matrix metalloproteinase-1 (MMP-1), and decrease the mRNA transcript levels of collagen synthesis-related genes and the inducible nitric oxide synthase (iNOS) gene by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Western blot analysis showed that the protein expression level of phosphorylated p65 (p-p65) significantly increased (P < 0.05). Vitamin C (VC) was able to protect against TMAO-induced oxidative stress in HSF cells, and reduce inflammation and collagen loss. These results indicated that TMAO can produce oxidative stress in HSF cells, which may activate the signaling pathway of nuclear factor kappa-B (NF-κB), promote NF-κB phosphorylation in HSF cells, induce inflammatory responses, reduce collagen synthesis, and accelerate collagen degradation, thus possibly promoting skin cell aging.
KHIMARA N, REBECCA H, MARK A B M. What is the role of mitochondrial dysfunction in skin photoaging?[J]. Experimental Dermatology, 2018, 27(2): 124-128. DOI:10.1111/exd.13476.
ARAVIISKAIA E, BERARDESCA E, BIEBER T, et al. The impact of airborne pollution on skin[J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33(8): 1496-1505. DOI:10.1111/jdv.15583.
TERRY L. Internal factors contributing to optimal skin health and rejuvenation[J]. Journal of Aesthetic Nursing, 2015, 4(6): 270-275. DOI:10.12968/joan.2015.4.6.270.
WILSON T, ZENENG W, KEVIN S, et al. Intestinal microbiotadependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure[J]. Journal of Cardiac Failure, 2015, 21(2): 91-96. DOI:10.1016/j.cardfail.2014.11.006.
ADRIANA F C, ANDREEA C, NIKI K, et al. Gut microbiota and aging: a focus on centenarians[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2020, 57(1): 1-14. DOI:10.1016/j.bbadis.2020.165765.
GOBERDHAN P D, MANJARI D, AKSHAJ P. Oxidative stress, cellular senescence and ageing[J]. AIMS Molecular Science, 2016, 3(3): 300-324. DOI:10.1016/j.mad.2017.07.006.
KE Y L, LI D, ZHAO M M, et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress[J]. Free Radical Biology and Medicine, 2018, 116: 88-100. DOI:10.1016/j.freeradbiomed.2018.01.007.
AUSTIN L M, OZAWA M, KIKUCHI T, et al. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients[J]. The Journal of Investigative Dermatology, 1999, 113(5): 752-759. DOI:10.1046/j.1523-1747.1999.00749.x.
OST K S, O’MEARA T R, STEPHENS W Z, et al. Adaptive immunity induces mutualism between commensal eukaryotes[J]. Nature, 2021, 596: 114-118. DOI:10.1038/s41586-021-03722-w.
LEI W, WON W L, YONG R C, et al. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways[J]. Environmental Pollution, 2019, 252: 1318-1324. DOI:10.1016/j.envpol.2019.06.029.
GELSE K, PÖSCHL E, AIGNER T. Collagens-structure, function, and biosynthesis[J]. Advanced Drug Delivery Reviews, 2003, 55(12): 1531-1546. DOI:10.1016/i.addr.2003.08.002.
XIAO Z B, YANG S T, LIU Y, et al. A novel glyceroglycolipid from brown algae ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells[J]. Chemico-Biological Interactions, 2022, 351: 109737. DOI:10.1016/j.cbi.2021.109737.
NORIKO M, MIAO M S, KANG L, et al. Protective effects of jin bai mei yan prescription on oxidative damage and photoaging induced by ultraviolet B in HaCaT cells[J]. Digital Chinese Medicine, 2020, 3(2): 57-66. DOI:10.1016/j.dcmed.2020.06.001.
EUN J P, YOUNG M K, KI C C. Hemin reduces HMGB1 release by UVB in an AMPK/HO-1-dependent pathway in human keratinocytes HaCaT cells[J]. Archives of Medical Research, 2017, 48(5): 423-431. DOI:10.1016/j.arcmed.2017.10.007.
FENG G Z, WEI L, CHE H L, et al. Cathelicidin-NV from nanorana ventripunctata effectively protects HaCaT cells, ameliorating ultraviolet B-induced skin photoaging[J]. Peptides, 2022, 150: 170712. DOI:10.1016/j.peptides.2021.170712.
RYU A R, LEE M Y. Chlorin e6-mediated photodynamic therapy promotes collagen production and suppresses MMPs expression via modulating AP-1 signaling in P. acnes-stimulated HaCaT cells[J]. Photodiagnosis and Photodynamic Therapy, 2017, 20(18): 71-77. DOI:10.1016/j.pdpdt.2017.08.002.
ZHOU Y P, HU Z M, FAN Y, et al. Mogroside V exerts antiinflammatory effect via MAPK-NF-κB/AP-1 and AMPK-PI3K/Akt/mTOR pathways in ulcerative colitis[J]. Journal of Functional Foods, 2021, 87: 104807. DOI:10.1016/j.pdpdt.2017.08.002.
BOSHTAM M, ASGARY S, KOUHPAYEH S, et al. Aptamers against pro-and anti-inflammatory cytokines: a review[J]. Inflammation, 2017, 40(1): 340-349. DOI:10.1007/s10753-016-0477-1.
MASUELLI L, BENVENUTO M, FOCACCETTI C, et al. Targeting the tumor immune microenvironment with “nutraceuticals”: from bench to clinical trials[J]. Pharmacology & Therapeutics, 2021, 219: 107700. DOI:10.1016/j.pharmthera.2020.107700.
VARANI J, DAME M K, RITTIE L, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation[J]. The American Journal of Pathology, 2006, 168(6): 1861-1868. DOI:10.2353/ajpath.2006.051302.
HUANG P Q, SUN R R, XU C C, et al. Glucocorticoid activates STAT3 and NF-κB synergistically with inflammatory cytokines to enhance the anti-inflammatory factor TSG6 expression in mesenchymal stem/stromal cells[J]. Cell Death & Disease, 2024, 15(1): 70. DOI:10.1038/s41419-024-06430-1.
REN D Y, WANG P, LIU C L, et al. Hazelnut protein-derived peptide LDAPGHR shows anti-inflammatory activity on LPS-induced RAW264.7 macrophage[J]. Journal of Functional Foods, 2018, 46(17): 449-455. DOI:10.1016/j.jff.2018.04.024.
MAYA-CANO D A, ARANGO-VARELA S, SANTA-GONZALEZ G A. Phenolic compounds of blueberries (Vaccinium spp) as a protective strategy against skin cell damage induced by ROS: a review of antioxidant potential and antiproliferative capacity[J]. Heliyon, 2021, 7(2): e06297-e06297. DOI:10.1016/j.heliyon.2021.e06297.
MATITO C, AGELL N, SANCHEZ-TENA S, et al. Protective effect of structurally diverse grape procyanidin fractions against UV-induced cell damage and death[J]. Journal of Agricultural and Food Chemistry, 2011, 59(9): 4489-4495. DOI:10.1021/jf103692a.
YANG G D, ZHANG X Y. TMAO promotes apoptosis and oxidative stress of pancreatic acinar cells by mediating IRE1α-XBP-1 pathway[J]. Saudi Journal of Gastroenterology, 2021, 27(6): 361-369. DOI:10.4103/sjg.sjg_12_21.
LI D, KE Y, ZHAN R, et al. Trimethylamine N-oxide promotes brain aging and cognitive impairment in mice[J]. Aging Cell, 2018, 17(4): 2768-2778. DOI:10.1111/acel.12768.
EWELINA Z, BARBARA B, MONIKA K. Antioxidant and antiinflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects[J]. Nutrients, 2017, 9(9): 970-977. DOI:10.3390/nu9090970.
BOSHTAM M, ASGARY S, KOUHPAYEH S, et al. Aptamers against pro-and anti-inflammatory cytokines: a review[J]. Inflammation, 2017, 40(1): 340-349. DOI:10.1007/s10753-016-0477-1.
YONG S L, SANG-BAE H, HYEON J H, et al. IL-32γ suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B[J]. Journal of Allergy and Clinical Immunology, 2020, 146(20): 156-168. DOI:10.1016/j.jaci.2019.12.905.
SABIYA A, SHAMSHAD A, ANU P, et al. UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways[J]. Food and Chemical Toxicology, 2016, 96: 183-190. DOI:10.1016/j.fct.2016.07.034.
SARA F, DANIELA M P G, MIRKO P, et al. Modulation of CAT-2B-mediated L-arginine uptake and nitric oxide biosynthesis in HCT116 cell line through biological activity of 4’-geranyloxyferulic acid extract from quinoa seeds[J]. International Journal of Molecular Sciences, 2019, 20(13): 3262-3270. DOI:10.3390/ijms20133262.
NATARAJAN V T, GANJU P, RAMKUMAR A, et al. Multifaceted pathways protect human skin from UV radiation[J]. Nature Chemical Biology, 2014, 10(7): 542-51. DOI:10.3390/ijms20133262.
BARRERA G. Oxidative stress and lipid peroxidation products in cancer progression and therapy[J]. ISRN Oncology, 2012, 45(3): 1-12. DOI:10.1016/j.cdp.2004.07.004.
GAO W, WANG Y S, EUNSON H, et al. Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type Ⅰ procollagen synthesis via inhibition of MAPK/AP-1, NF-κB and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 185: 241-253. DOI:10.1016/j.jphotobiol.2018.06.007.
XU K, MA C Y, XU L H, et al. Polygalacic acid inhibits MMPs expression and osteoarthritis via Wnt/β-catenin and MAPK signal pathways suppression[J]. International Immunopharmacology, 2018, 63: 246-252. DOI:10.1016/j.intimp.2018.08.013.
CHENG X Y, QIU X H, LIU Y K, et al. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells: a new link between trimethylamine N-oxide and atherosclerotic thrombosis[J]. Thrombosis Research, 2019, 177: 110-116. DOI:10.1016/j.thromres.2019.02.028.