PDF (3.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Recent Advances in Research on Metal Nanoparticle-Based Active Composite Packaging Films for Fresh Food Preservation

Xingyu SI Shuai LIUYang ZHANG ()
College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
Show Author Information

Abstract

Concerns about fresh food quality have continuously increased in recent years. Reducing the spoilage and loss of fresh foods and ensuring their safety for consumption are of great significance to facilitating the high-quality development of the food industry and meeting people’s growing needs for a better life. Active composite packaging films have demonstrated remarkable efficacy in enhancing the quality of fresh foods. Metal nanoparticle-polymer composite films can inhibit microbial growth and metabolism, slow down the oxidation process of foods, and reduce harmful substances in the storage microenvironment, thereby improving the safety of foods and finally extending the shelf life. As such, active composite packaging films have become a research hotspot in the field of food preservation. This review first summarizes the fabrication strategies and characteristics of metal nanoparticle-polymer composite films. Subsequently, a comprehensive analysis of the mechanism of food preservation by the composite films is conducted from the aspects of antibacterial effect, antioxidant effect, ethylene removal, and high barrier properties. Additionally, the sensing function and biosafety of the composite films are explored. Finally, the current challenges for the application of the composite films are elaborated, and an outlook on future opportunities is provided with a view to promoting the research and application of composite films in the field of fresh food packaging.

CLC number: TS206.4 Document code: A Article ID: 1002-6630(2024)12-0340-09

References

[1]

BAI B, ZHAO K, LI X Z. Application research of nano-storage materials in cold chain logistics of e-commerce fresh agricultural products[J]. Results in Physics, 2019, 13: 102049. DOI:10.1016/j.rinp.2019.01.083.

[2]

PETKOSKA A T, DANILOSKI D, D’CUNHA N M, et al. Edible packaging: sustainable solutions and novel trends in food packaging[J]. Food Research International, 2021, 140: 109981. DOI:10.1016/j.foodres.2020.109981.

[3]

SHAO P, LIU L M, YU J H, et al. An overview of intelligent freshness indicator packaging for food quality and safety monitoring[J]. Trends in Food Science & Technology, 2021, 118: 285-296. DOI:10.1016/j.tifs.2021.10.012.

[4]

NIKOLIC M V, VASILJEVIC Z Z, AUGER S, et al. Metal oxide nanoparticles for safe active and intelligent food packaging[J]. Trends in Food Science & Technology, 2021, 116: 655-668. DOI:10.1016/j.tifs.2021.08.019.

[5]

XU X L, WANG Y, ZHANG D, et al. In situ growth of photocatalytic Ag-decorated β-Bi2O3/Bi2O2.7 heterostructure film on PVC polymer matrices with self-cleaning and antibacterial properties[J]. Chemical Engineering Journal, 2022, 429: 131058. DOI:10.1016/j.cej.2021.131058.

[6]

ZELJKO M, BULATOVIĆ V O, BLAŽIC R, et al. The development of eco-friendly UV-protective polyacrylate/rutile TiO2 coating[J]. Journal of Applied Polymer Science, 2022, 139(25): e52393. DOI:10.1002/app.52393.

[7]

KOSHY R R, REGHUNADHAN A, MARY S K, et al. MgONP/chitin nanowhisker-based hybrid filler bound soy protein thin films for bioactive packaging applications[J]. International Journal of Food Science & Technology, 2022, 57(9): 5650-5662. DOI:10.1111/ijfs.15805.

[8]

LI S H, CHEN G Y, QIANG S Q, et al. Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes[J]. International Journal of Food Microbiology 2020, 331: 108763. DOI:10.1016/j.ijfoodmicro.2020.108763.

[9]

MARREZ D A, ABDELHAMID A E, DARWESH O M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety[J]. Food Packaging and Shelf Life, 2019, 20: 100302. DOI:10.1016/j.fpsl.2019.100302.

[10]

ROY S, RHIM J W. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications[J]. Food Bioscience, 2022, 49: 101867. DOI:10.1016/j.fbio.2022.101867.

[11]

SINGH A K. Flower extract-mediated green synthesis of bimetallic Cu-Zn oxide nanoparticles and its antimicrobial efficacy in hydrocolloid films[J]. Bioresource Technology Reports, 2022, 18: 101034. DOI:10.1016/j.biteb.2022.101034.

[12]

ALAMDARI S, MIRZAEE O, JAHROODI F N, et al. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using vild Mentha pulegium extract for packaging applications[J]. Surfaces and Interfaces, 2022, 34: 102349. DOI:10.1016/j.surfin.2022.102349.

[14]

KOSHY R R, REGHUNADHAN A, MARY S K, et al. AgNP anchored carbon dots and chitin nanowhisker embedded soy protein isolate films with freshness preservation for active packaging[J]. Food Packaging and Shelf Life, 2022, 33: 100876. DOI:10.1016/j.fpsl.2022.100876.

[15]

BASUMATARY K, DAIMARY P, DAS S K, et al. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging[J]. Food Packaging and Shelf Life, 2018, 17: 99-106. DOI:10.1016/j.fpsl.2018.06.003.

[16]

JAMRÓZ E, KOPEL P, JUSZCZAK L, et al. Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life[J]. Food Packaging and Shelf Life, 2019, 21: 100339. DOI:10.1016/j.fpsl.2019.100339.

[17]

NAEEJI N, SHAHBAZI Y, SHAVISI N. Effect of gamma irradiation on physico-mechanical and structural properties of basil seed mucilage-chitosan films containing Ziziphora clinopodioides essential oil and MgO nanoparticles for rainbow trout packaging[J]. Journal of Food Processing and Preservation, 2020, 44(10): e14781. DOI:10.1111/jfpp.14781.

[18]

EGHBALIAN M, SHAVISI N, SHAHBAZI Y, et al. Active packaging based on sodium caseinate-gelatin nanofiber mats encapsulated with Mentha spicata L. essential oil and MgO nanoparticles: preparation, properties, and food application[J]. Food Packaging and Shelf Life, 2021, 29: 100737. DOI:10.1016/j.fpsl.2021.100737.

[19]

BEAK S, KIM H, SONG K B. Characterization of an olive flounder bone gelatin-zinc oxide nanocomposite film and evaluation of its potential application in spinach packaging[J]. Journal of Food Science, 2017, 82(11): 2643-2649. DOI:10.1111/1750-3841.13949.

[20]

SHAH S A A, ATHIR N, SHEHZAD F K, et al. In situ polymerization of curcumin incorporated polyurethane/zinc oxide nanocomposites as a potential biomaterial[J]. Reactive and Functional Polymers, 2022, 180: 105382. DOI:10.1016/j.reactfunctpolym.2022.105382.

[21]

VIZZINI P, BELTRAME E, ZANET V, et al. Development and evaluation of qPCR detection method and Zn-MgO/alginate active packaging for controlling Listeria monocytogenes contamination in cold-smoked salmon[J]. Foods, 2020, 9(10): 1353. DOI:10.3390/foods9101353.

[22]

VIEIRA I R S, DE CARVALHO A P A, CONTE-JUNIOR C A. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(4): 3673-3716. DOI:10.1111/1541-4337.12990.

[23]

KUAI L Y, LIU F, CHIOU B S, et al. Controlled release of antioxidants from active food packaging: a review[J]. Food Hydrocolloids, 2021, 120: 106992. DOI:10.1016/j.foodhyd.2021.106992.

[24]

DUAN N, LI Q, MENG X Y, et al. Preparation and characterization of κ-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation[J]. Food Chemistry, 2021, 364: 130441. DOI:10.1016/j.foodchem.2021.130441.

[25]

LEE K, BAEK S, KIM D, et al. A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® Sheet and RGB color analysis[J]. Food Packaging and Shelf Life, 2019, 19: 40-46. DOI:10.1016/j.fpsl.2018.11.016.

[26]

MOUZAHIM M E, EDDARAI E M, ELADAOUI S, et al. Effect of Kaolin clay and Ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation[J]. Food Chemistry, 2023, 410: 135470. DOI:10.1016/j.foodchem.2023.135470.

[27]

QI Z W, XIE P J, YANG C, et al. Developing fisetin-AgNPs incorporated in reinforced chitosan/pullulan composite-film and its application of postharvest storage in litchi fruit[J]. Food Chemistry, 2023, 407: 135122. DOI:10.1016/j.foodchem.2022.135122.

[28]

AHMADI A, AHMADI P, SANI M A, et al. Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices[J]. International Journal of Biological Macromolecules, 2021, 175: 87-97. DOI:10.1016/j.ijbiomac.2021.01.135.

[31]

SONG X L, LI Y Y, WEI Z D, et al. Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light[J]. Chemical Engineering Journal, 2017, 314: 443-452. DOI:10.1016/j.cej.2016.11.164.

[32]

YANG D M, LIU Q, GAO Y H, et al. Characterization of silver nanoparticles loaded chitosan/polyvinyl alcohol antibacterial Films for food packaging[J]. Food Hydrocolloids, 2023, 136: 108305. DOI:10.1016/j.foodhyd.2022.108305.

[33]

SWAROOP C, SHUKLA M. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications[J]. International Journal of Biological Macromolecules, 2018, 113: 729-736. DOI:10.1016/j.ijbiomac.2018.02.156.

[34]

MEYDANJU N, PIRSA S, FARZI J. Biodegradable film based on lemon peel powder containing xanthan gum and TiO2-Ag nanoparticles: investigation of physicochemical and antibacterial properties[J]. Polymer Testing, 2022, 106: 107445. DOI:10.1016/j.polymertesting.2021.107445.

[35]

KAEWKLIN P, SIRIPATRAWAN U, SUWANAGUL A, et al. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit[J]. International Journal of Biological Macromolecules, 2018, 112: 523-529. DOI:10.1016/j.ijbiomac.2018.01.124.

[36]

LI H, LI W, ZHANG J J, et al. Preparation and characterization of sodium alginate/gelatin/Ag nanocomposite antibacterial film and its application in the preservation of tangerine[J]. Food Packaging and Shelf Life, 2022, 33: 100928. DOI:10.1016/j.fpsl.2022.100928.

[37]

KOWSALYA E, MOSACHRISTAS K, BALASHANMUGAM P, et al. Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications[J]. Journal of Food Process Engineering, 2021, 44(3): e13641. DOI:10.1111/jfpe.13641.

[38]

GONI-CIAURRIZ L, VELAZ I. Antibacterial and degradable properties of beta-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging[J]. International Journal of Biological Macromolecules, 2022, 216: 347-360. DOI:10.1016/j.ijbiomac.2022.06.202.

[39]

RIZZOTTO F, VASILJEVIC Z Z, STANOJEVIC G, et al. Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application[J]. Food Chemistry, 2022, 390: 133198. DOI:10.1016/j.foodchem.2022.133198.

[40]

KALIA A, KAUR M, SHAMI A, et al. Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit[J]. Biomolecules, 2021, 11(2): 224. DOI:10.3390/biom11020224.

[41]

BORO U, MOHOLKAR V S. Antimicrobial bionanocomposites of poly(lactic Acid)/ZnO deposited halloysite nanotubes for potential food packaging applications[J]. Materials Today Communications, 2022, 33: 104787. DOI:10.1016/j.mtcomm.2022.104787.

[42]

SATHISHBABU P, HANI U. Development and evaluation of carrier oils encapsulated silver doped zinc oxide nanoparticles loaded bio-plastic composites towards anti-microbial packaging applications[J]. Inorganic Chemistry Communications, 2023, 153: 110763. DOI:10.1016/j.inoche.2023.110763.

[43]

SANI I K, GESHLAGHI S P, PIRSA S, et al. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging[J]. Food Hydrocolloids, 2021, 117: 106719. DOI:10.1016/j.foodhyd.2021.106719.

[44]

RANGARAJ V M, DEVARAJU S, RAMBABU K, et al. Silver-sepiolite (Ag-Sep) hybrid reinforced active gelatin/date waste extract (DSWE) blend composite films for food packaging application[J]. Food Chemistry, 2022, 369: 130983. DOI:10.1016/j.foodchem.2021.130983.

[46]

EZATI P, RIAHI Z, RHIM J W. CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning[J]. Food Hydrocolloids, 2022, 122: 107104. DOI:10.1016/j.foodhyd.2021.107104.

[47]

CHENG H, XU H, MCCLEMENTS D J, et al. Recent advances in intelligent food packaging materials: principles, preparation and applications[J]. Food Chemistry, 2022, 375: 131738. DOI:10.1016/j.foodchem.2021.131738.

[48]

SON E J, LEE J S, LEE M, et al. Self-adhesive graphene oxide-wrapped TiO2 nanoparticles for UV-activated colorimetric oxygen detection[J]. Sensors and Actuators B: Chemical, 2015, 213: 322-328. DOI:10.1016/j.snb.2015.02.084.

[49]

WEN J W, HUANG S T, JIA L, et al. Visible colorimetric oxygen indicator based on Ag-loaded TiO2 nanotubes for quick response and real-time monitoring of the integrity of modified atmosphere packaging[J]. Advanced Materials Technologies, 2019, 4(9): 1900121. DOI:10.1002/admt.201900121.

[50]

JAYAKUMAR A, HEEA K V, SUMI T S, et al. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application[J]. International Journal of Biological Macromolecules, 2019, 136: 395-403. DOI:10.1016/j.ijbiomac.2019.06.018.

[51]

ZHANG X P, LIU Y M, YONG H, et al. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract[J]. Food Hydrocolloids, 2019, 94: 80-92. DOI:10.1016/j.foodhyd.2019.03.009.

[52]

QIN Y, LIU Y P, YUAN L M, et al. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract[J]. Food Hydrocolloids, 2019, 96: 102-111. DOI:10.1016/j.foodhyd.2019.05.017.

[53]

XIE Q, LUO D, MU K Y, et al. Preparation and characterization of carboxymethyl chitosan/nano-MgO/red cabbage anthocyanins multifunctional films via colloid formation and its application on shrimp preservation[J]. Food Packaging and Shelf Life, 2023, 37: 101074. DOI:10.1016/j.fpsl.2023.101074.

[54]

SANJAY P N, GAYITHRI K C, K. NAVEEN KUMAR S, et al. TiO2-PANI based anti-typhi immobilized nanosensor for Salmonella typhi detection[J]. Materials Today: Proceedings, 2016, 3(6): 1772-1777. DOI:10.1016/j.matpr.2016.04.073.

[55]

BENIWAL A, SUNNY. Apple fruit quality monitoring at room temperature using sol-gel spin coated Ni-SnO2 thin film sensor[J]. Journal of Food Measurement and Characterization, 2018, 13(1): 857-863. DOI:10.1007/s11694-018-9998-7.

[56]

PRIYADARSHI R, KIM S M, RHIM J W. Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products[J]. Sustainable Materials and Technologies, 2021, 29: e00325. DOI:10.1016/j.susmat.2021.e00325.

[57]

MARY S K, KOSHY R R, DANIEL J, et al. Development of starch based intelligent films by incorporating anthocyanins of butterfly pea flower and TiO2 and their applicability as freshness sensors for prawns during storage[J]. RSC Advances, 2020, 10(65): 39822-39830. DOI:10.1039/d0ra05986b.

[58]

JAYAKUMAR A, RADOOR S, KIM J T, et al. Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps[J]. Food Packaging and Shelf Life, 2022, 34: 100967. DOI:10.1016/j.fpsl.2022.100967.

[59]

ZHAI X D, LI Z H, SHI J Y, et al. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging[J]. Food Chemistry, 2019, 290: 135-143. DOI:10.1016/j.foodchem.2019.03.138.

[60]

ZHANG Y, TANG Q, HUANG K Q, et al. Developing strong and tough cellulose acetate/ZIF67 intelligent active films for shrimp freshness monitoring[J]. Carbohydrate Polymers, 2023, 302: 120375. DOI:10.1016/j.carbpol.2022.120375.

[61]

ESKANDARABADI S M, MAHMOUDIAN M, FARAH K R, et al. Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles[J]. Food Packaging and Shelf Life, 2019, 22: 100389. DOI:10.1016/j.fpsl.2019.100389.

[62]

CARVALHO A P A D, CONTE-JUNIOR C A. Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: emerging alternatives to food packaging and potentials in nanomedicine[J]. Trends in Food Science & Technology, 2021, 116: 370-386. DOI:10.1016/j.tifs.2021.07.038.

[63]

ORTEGA F, SOBRAL P, JIOS J L, et al. Starch nanocomposite films: migration studies of nanoparticles to food simulants and biodisintegration in soil[J]. Polymers, 2022, 14(9): 1636. DOI:10.3390/polym14091636.

[64]

YU Z L, WANG W, SUN L, et al. Preparation of cellulose nanofibril/titanium dioxide nanoparticle nanocomposites as fillers for PVA-based packaging and investigation into their intestinal toxicity[J]. International Journal of Biological Macromolecules, 2020, 156: 1174-1182. DOI:10.1016/j.ijbiomac.2019.11.153.

Food Science
Pages 340-348
Cite this article:
SI X, LIU S, ZHANG Y. Recent Advances in Research on Metal Nanoparticle-Based Active Composite Packaging Films for Fresh Food Preservation. Food Science, 2024, 45(12): 340-348. https://doi.org/10.7506/spkx1002-6630-20230529-272
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return