Coaxial electrospinning is a new technology for the preparation of multi-structure nanofibers, with the advantages of simple equipment operation, mild processing conditions and adjustable structure. This technology uses a direct current (DC) high voltage electrostatic field to continuously transform a variety of polymer solutions into multi-structure nanofibers, such as core-shell, hollow and porous ones. These special structures endow nanofibers with excellent encapsulation and controlled release properties, diverse interface structures, and a large number of reaction sites, which have potential applications in functional ingredient encapsulation, slow release of bioactive ingredients, and food detection. This article briefly introduces the basic principle of coaxial electrospinning technology and the major factors affecting nanofiber formation, such as spinning solution properties, process parameters, and environmental conditions. Moreover, it elaborates on the strategies for preparing multilevel structure nanofibers by using coaxial electrospinning and its structural advantages, focusing on the application of this technology in active food packaging, encapsulation and targeted delivery of bioactive ingredients, food detection, and juice filtration and concentration. It is our hope that this article will promote the wide application of coaxial electrospinning technology in the field of food.
DE DICASTILLO C L, BRUNA J, TORRES A, et al. A traditional aboriginal condiment as an antioxidant agent in the development of biodegradable active packaging[J]. Journal of Applied Polymer Science, 2017, 134(15): e44692. DOI:10.1002/app.44692.
ZHANG J J, ZHANG J N, HUANG X W, et al. Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation[J]. Food Chemistry, 2023, 400: 134030. DOI:10.1016/j.foodchem.2022.134030.
WANG P, LV H, CAO X Y, et al. Recent progress of the preparation and application of electrospun porous nanofibers[J]. Polymers, 2023, 15(4): 921. DOI:10.3390/polym15040921.
YOON J, YANG H S, LEE B S, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications[J]. Advanced Materials, 2018, 30(42): e1704765. DOI:10.1002/adma.201704765.
GUPTA P, ELKINS C, LONG T E, et al. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer, 2005, 46(13): 4799-4810. DOI:10.1016/j.polymer.2005.04.021.
TIWARI S K, VENKATRAMAN S S. Importance of viscosity parameters in electrospinning: of monolithic and core-shell fibers[J]. Materials Science and Engineering: C, 2012, 32(5): 1037-1042. DOI:10.1016/j.msec.2012.02.019.
KAERKITCHA N, CHUANGCHOTE S, HACHIYA K, et al. Influence of the viscosity ratio of polyacrylonitrile/poly(methyl methacrylate) solutions on core-shell fibers prepared by coaxial electrospinning[J]. Polymer Journal, 2017, 49(6): 497-502. DOI:10.1038/pj.2017.8.
YU J H, FRIDRIKH S V, RUTLEDGE G C. Production of submicrometer diameter fibers by two-fluid electrospinning[J]. Advanced Materials, 2004, 16(17): 1562-1566. DOI:10.1002/adma.200306644.
HALAUI R, ZUSSMAN E, KHALFIN R, et al. Polymeric microtubes for water filtration by co-axial electrospinning technique[J]. Polymers for Advanced Technologies, 2017, 28(5): 570-582. DOI:10.1002/pat.3794.
LI L, JIANG Z, LI M M, et al. Hierarchically structured PMMA fibers fabricated by electrospinning[J]. RSC Advances, 2014, 4(95): 52973-52985. DOI:10.1039/c4ra05385k.
MOGHE A K, GUPTA B S. Co-axial electrospinning for nanofiber structures: preparation and applications[J]. Polymer Reviews, 2008, 48(2): 353-377. DOI:10.1080/15583720802022257.
ZHAO Y, CAO X Y, JIANG L. Bio-mimic multichannel microtubes by a facile method[J]. Journal of the American Chemical Society, 2007, 129(4): 764-765. DOI:10.1021/ja068165g.
YAO Z C, CHEN S C, AHMAD Z, et al. Essential oil bioactive fibrous membranes prepared via coaxial electrospinning[J]. Journal of Food Science, 2017, 82(6): 1412-1422. DOI:10.1111/1750-3841.13723.
KAERKITCHA N, CHUANGCHOTE S, SAGAWA T. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends[J]. Nanoscale Research Letters, 2016, 11(1): 186. DOI:10.1186/s11671-016-1416-7.
WANG X, WANG Q Q, HUANG F L, et al. The morphology of Taylor cone influenced by different coaxial composite nozzle structures[J]. Fibers and Polymers, 2016, 17(4): 624-629. DOI:10.1007/s12221-016-5730-6.
LEE B S, JEON S Y, PARK H, et al. New electrospinning nozzle to reduce jet instability and its application to manufacture of multilayered nanofibers[J]. Scientific Reports, 2014, 4: 6758. DOI:10.1038/srep06758.
RAHIMI M, MOKHTARI J. Fabrication of thermo-regulating hexadecane-polyurethane core-shell composite nanofibrous mat as advanced technical layer: effect of coaxial nozzle geometry[J]. Journal of Industrial Textiles, 2018, 47(6): 1134-1151. DOI:10.1177/1528083716676816.
BOGNITZKI M, HOU H, ISHAQUE M, et al. Polymer, metal, and hybrid nano-and mesotubes by coating degradable polymer template fibers (TUFT process)[J]. Advanced Materials, 2000, 12(9): 637-640. DOI:10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W.
LIU G J, QIAO L J, GUO A. Diblock copolymer nanofibers[J]. Macromolecules, 1996, 29(16): 5508-5510. DOI:10.1021/ma9604653.
JANG J, LIM B, LEE J, et al. Fabrication of a novel polypyrrole/poly (methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor[J]. Chemical Communications, 2001(1): 83-84. DOI:10.1039/B006197M.
RASHEDI S, AFSHAR S, ROSTAMI A, et al. Co-electrospun poly (lactic acid)/gelatin nanofibrous scaffold prepared by a new solvent system: morphological, mechanical and in vitro degradability properties[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70(8): 545-553. DOI:10.1080/00914037.2020.1740987.
MAHMOOD K, KAMILAH H, KARIM A A, et al. Enhancing the functional properties of fish gelatin mats by dual encapsulation of essential oils in β-cyclodextrins/fish gelatin matrix via coaxial electrospinning[J]. Food Hydrocolloids, 2023, 137: 108324. DOI:10.1016/j.foodhyd.2022.108324.
HUDECKI A, GOLA J, GHAVAMI S, et al. Structure and properties of slow-resorbing nanofibers obtained by (co axial) electrospinning as tissue scaffolds in regenerative medicine[J]. PeerJ, 2017, 5: e4125. DOI:10.7717/peerj.4125.
MANCIPE J M A, PEREIRA L C B, DE MIRANDA BORCHIO P G, et al. Novel polycaprolactone (PCL)-type Ⅰ collagen core-shell electrospun nanofibers for wound healing applications[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2023, 111(2): 366-381. DOI:10.1002/jbm.b.35156.
JI W, YANG F, VAN DEN BEUCKEN J J J P, et al. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning[J]. Acta Biomaterialia, 2010, 6(11): 4199-4207. DOI:10.1016/j.actbio.2010.05.025.
MOVAHEDI M, ASEFNEJAD A, RAFIENIA M, et al. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: in vitro and in vivo evaluation[J]. International Journal of Biological Macromolecules, 2020, 146: 627-637. DOI:10.1016/j.ijbiomac.2019.11.233.
JIA X L, ZHAO C G, LI P, et al. Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2011, 22(13): 1811-1827. DOI:10.1163/092050610X528534.
DROR Y, SALALHA W, AVRAHAMI R, et al. One-step production of polymeric microtubes by co electrospinning[J]. Small, 2007, 3(6): 1064-1073. DOI:10.1002/smll.200600536.
KANG S M, HWANG J H. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020, 379: 122315. DOI:10.1016/j.cej.2019.122315.
JI X Y, SU Z G, WANG P, et al. Polyelectrolyte doped hollow nanofibers for positional assembly of bienzyme system for cascade reaction at O/W interface[J]. ACS Catalysis, 2014, 4(12): 4548-4559. DOI:10.1021/cs501383j.
JI X Y, WANG P, SU Z G, et al. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells[J]. Journal of Materials Chemistry B, 2014, 2(2): 181-190. DOI:10.1039/c3tb21232g.
CHEN X H, LIANG R, QIN C, et al. Coaxial electrospinning Fe2O3@Co3O4 double shelled nanotubes for enhanced ethanol sensing performance in a wide humidity range[J]. Journal of Alloys and Compounds, 2022, 891: 161868. DOI:10.1016/j.jallcom.2021.161868.
CHEN H Y, WANG N, DI J C, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning[J]. Langmuir, 2010, 26(13): 11291-11296. DOI:10.1021/la100611f.
QIN Z, ZHANG P, WU Z, et al. Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane[J]. Materials & Design, 2018, 147: 175-181. DOI:10.1016/j.matdes.2018.03.040.
CHEN X, LI H H, LU W P, et al. Antibacterial porous coaxial drugcarrying nanofibers for sustained drug-releasing applications[J]. Nanomaterials, 2021, 11(5): 1316. DOI:10.3390/nano11051316.
DENG Y F, ZHANG N, HUANG T, et al. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereo complex polylactide fibers via coaxial electrospinning technology[J]. Applied Surface Science, 2022, 573: 151619. DOI:10.1016/j.apsusc.2021.151619.
KALRA V, LEE J, LEE J H, et al. Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers[J]. Small, 2008, 4(11): 2067-2073. DOI:10.1002/smll.200800279.
NGUYEN T T T, CHUNG O H, PARK J S. Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity[J]. Carbohydrate Polymers, 2011, 86(4): 1799-1806. DOI:10.1016/j.carbpol.2011.07.014.
KHODKAR F, EBRAHIMI N G. Preparation and properties of antibacterial, biocompatible core-shell fibers produced by coaxial electrospinning[J]. Journal of Applied Polymer Science, 2017, 134(25): e44979. DOI:10.1002/app.44979.
HAN Y, DING J, ZHANG J T, et al. Fabrication and characterization of polylactic acid coaxial antibacterial nanofibers embedded with cinnamaldehyde/tea polyphenol with food packaging potential[J]. International Journal of Biological Macromolecules, 2021, 184: 739-749. DOI:10.1016/j.ijbiomac.2021.06.143.
KOREHEI R, KADLA J. Incorporation of T4 bacteriophage in electrospun fibres[J]. Journal of Applied Microbiology, 2013, 114(5): 1425-1434. DOI:10.1111/jam.12158.
WANG Q X, LIU S L, LU W J, et al. Fabrication of curcumin@Ag loaded core/shell nanofiber membrane and its synergistic antibacterial properties[J]. Frontiers in Chemistry, 2022, 10: 870666. DOI:10.3389/fchem.2022.870666.
JIANG W L, ZHAO P, SONG W L, et al. Electrospun zein/polyoxyethylene core-sheath ultrathin fibers and their antibacterial food packaging applications[J]. Biomolecules, 2022, 12(8): 1110. DOI:10.3390/biom12081110.
LI T T, SHEN Y, CHEN H T, et al. Antibacterial properties of coaxial spinning membrane of methyl ferulate/zein and its preservation effect on sea bass[J]. Foods, 2021, 10(10): 2385. DOI:10.3390/foods10102385.
DUAN M X, SUN J S, YU S, et al. Insights into electrospun pullulan carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging[J]. International Journal of Biological Macromolecules, 2023, 233: 123433. DOI:10.1016/j.ijbiomac.2023.123433.
YAO Z C, CHANG M W, AHMAD Z, et al. Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning[J]. Journal of Food Engineering, 2016, 191: 115-123. DOI:10.1016/j.jfoodeng.2016.07.012.
LI Y Y, DONG Q F, CHEN J W, et al. Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries[J]. Postharvest Biology and Technology, 2020, 159: 111028. DOI:10.1016/j.postharvbio.2019.111028.
ZHANG Y B, ZHANG Y, ZHU Z, et al. Encapsulation of thymol in biodegradable nanofiber via coaxial eletrospinning and applications in fruit preservation[J]. Journal of Agricultural and Food Chemistry, 2019, 67(6): 1736-1741. DOI:10.1021/acs.jafc.8b06362.
LI T T, ZHANG X H, MEI J L, et al. Preparation of linalool/polycaprolactone coaxial electrospinning film and application in preserving salmon slices[J]. Frontiers in Microbiology, 2022, 13: 860123. DOI:10.3389/fmicb.2022.860123.
HUANG X Y, JIANG W L, ZHOU J F, et al. The applications of ferulic-acid-loaded fibrous films for fruit preservation[J]. Polymers, 2022, 14(22): 4947. DOI:10.3390/polym14224947.
DROSOU C, KROKIDA M, BILIADERIS C G. Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: enhancement of oxidative stability and photoprotection[J]. Food Hydrocolloids, 2022, 133: 107949. DOI:10.1016/j.foodhyd.2022.107949.
LAN X Z, WANG H, BAI J F, et al. Multidrug-loaded electrospun micro/nanofibrous membranes: fabrication strategies, release behaviors and applications in regenerative medicine[J]. Journal of Controlled Release, 2021, 330: 1264-1287. DOI:10.1016/j.jconrel.2020.11.036.
AYTAC Z, UYAR T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin[J]. International Journal of Pharmaceutics, 2017, 518(1/2): 177-184. DOI:10.1016/j.ijpharm.2016.12.061.
HOU L J, ZHANG L M, YU C X, et al. One-pot self-assembly of core-shell nanoparticles within fibers by coaxial electrospinning for intestine-targeted delivery of curcumin[J]. Foods, 2023, 12(8): 1623. DOI:10.3390/foods12081623.
WEN P, HU T G, LI L, et al. A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning[J]. Food & Function, 2018, 9(11): 5999-6009. DOI:10.1039/c8fo01216d.
BIRAJDAR M S, LEE J. Sonication-triggered zero-order release by uncorking core-shell nanofibers[J]. Chemical Engineering Journal, 2016, 288: 1-8. DOI:10.1016/j.cej.2015.11.095.
FAZIO E, RIDOLFO A, NERI G. Thermally activated noble metal nanoparticles incorporated in electrospun fiber-based drug delivery systems[J]. Current Nanomaterials, 2019, 4(1): 21-31. DOI:10.2174/1573407214666180914121929.
LI L, YANG G, ZHOU G L, et al. Thermally switched release from a nanogel-in-microfiber device[J]. Advanced Healthcare Materials, 2015, 4(11): 1658-1663. DOI:10.1002/adhm.201500267.
XU C, MA J G, WANG W, et al. Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning[J]. Food Hydrocolloids, 2022, 124: 107216. DOI:10.1016/j.foodhyd.2021.107216.
YU H L, LIU W H, LI D M, et al. Targeting delivery system for Lactobacillus plantarum based on functionalized electrospun nanofibers[J]. Polymers, 2020, 12(7): 1565. DOI:10.3390/polym12071565.
FENG K, HUANG R M, WU R Q, et al. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions[J]. Food Chemistry, 2020, 310: 125977. DOI:10.1016/j.foodchem.2019.125977.
XU C, MA J G, LIU Z J, et al. Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning[J]. Food Chemistry, 2023, 402: 134253. DOI:10.1016/j.foodchem.2022.134253.
AFOLABI-OWOLABI O T, ABIDIN S Z, ARIFFIN F. Electrospun polymer nanofiber from Moringa oleifera kernel oil with coaxial electrospinning method[J]. Current Nutrition & Food Science, 2020, 16(1): 90-97. DOI:10.2174/1573401315666181120113219.
ISIK B S, ALTAY F, CAPANOGLU E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility[J]. Food Chemistry, 2018, 265: 260-273. DOI:10.1016/j.foodchem.2018.05.064.
WEN P, HU T G, WEN Y, et al. Targeted delivery of phycocyanin for the prevention of colon cancer using electrospun fibers[J]. Food & Function, 2019, 10(4): 1816-1825. DOI:10.1039/c8fo02447b.
BAGHERI H, REZVANI O, BANIHASHEMI S. Core-shell electrospun polybutylene terephthalate/polypyrrole hollow nanofibers for micro-solid phase extraction[J]. Journal of Chromatography A, 2016, 1434: 19-28. DOI:10.1016/j.chroma.2015.12.082.
REZVANI O, HEDESHI M H, BAGHERI H. Polyamide/titania hollow nanofibers prepared by core-shell electrospinning as a microextractive phase in a fabricated sandwiched format microfluidic device[J]. Journal of Chromatography A, 2017, 1528: 1-9. DOI:10.1016/j.chroma.2017.10.052.
WU Q, WU D P, GUAN Y F. Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue[J]. Journal of Chromatography A, 2014, 1342: 16-23. DOI:10.1016/j.chroma.2014.03.055.
SITT A, SOUKUPOVA J, MILLER D, et al. Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes[J]. Small, 2016, 12(11): 1432-1439. DOI:10.1002/smll.201503467.
RAMON-MARQUEZ T, SESAY A M, PANJAN P, et al. A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose[J]. Sensors and Actuators B: Chemical, 2017, 250: 156-161. DOI:10.1016/j.snb.2017.04.140.
RAMON-MARQUEZ T, MEDINA-CASTILLO A L, NAGIAH N, et al. A multifunctional material based on co electrospinning for developing biosensors with optical oxygen transduction[J]. Analytica Chimica Acta, 2018, 1015: 66-73. DOI:10.1016/j.aca.2018.02.010.
HAN D, FILOCAMO S, KIRBY R, et al. Deactivating chemical agents using enzyme coated nanofibers formed by electrospinning[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4633-4639. DOI:/10.1021/am201064b.
JI X Y, SU Z G, WANG P, et al. “Ready-to-use” hollow nanofiber membrane-based glucose testing strips[J]. Analyst, 2014, 139(24): 6467-6473. DOI:10.1039/c4an01354a.
WANG S G, JIANG X, CHEN P C, et al. Preparation of coaxial-electrospun poly[bis(p-methylphenoxy)] phosphazene nanofiber membrane for enzyme immobilization[J]. International Journal of Molecular Sciences, 2012, 13(11): 14136-14148. DOI:10.3390/ijms131114136.
SENGOR M, OZGUN A, GUNDUZ O, et al. Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds[J]. Materials Letters, 2020, 263: 127233. DOI:10.1016/j.matlet.2019.127233.
GABRIELCZYK J, DUENSING T, BUCHHOLZ S, et al. A comparative study on immobilization of fructosyltransferase in biodegradable polymers by electrospinning[J]. Applied Biochemistry and Biotechnology, 2018, 185(3): 847-862. DOI:10.1007/s12010-018-2694-6.
JI X Y, SU Z G, LIU C X, et al. Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers[J]. Biochemical Engineering Journal, 2017, 121: 147-155. DOI:10.1016/j.bej.2017.02.007.
LI M J, HUAN K, DENG D M, et al. Coaxial electrospinning synthesis of size tunable CuO/NiO hollow heterostructured nanofibers: towards detection of glucose level in human serum[J]. Colloids and Surfaces B: Biointerfaces, 2023, 222: 113047. DOI:10.1016/j.colsurfb.2022.113047.
KOKULNATHAN T, VISHNURAJ R, CHEN S M, et al. Tailored construction of one-dimensional TiO2/Au nanofibers: validation of an analytical assay for detection of diphenylamine in food samples[J]. Food Chemistry, 2022, 380: 132052. DOI:10.1016/j.foodchem.2022.132052.
COSIO M S, PELLICANÒ A, GARDANA C, et al. Debittering of grape juice by electrospun nylon nanofibrous membranes: impact of filtration on physicochemical, functional, and sensory properties[J]. Polymers, 2022, 15(1): 192. DOI:10.3390/polym15010192.
FUENMAYOR C A, LEMMA S M, MANNINO S, et al. Filtration of apple juice by nylon nanofibrous membranes[J]. Journal of Food Engineering, 2014, 122: 110-116. DOI:10.1016/j.jfoodeng.2013.08.038.
HALAUI R, MOLDAVSKY A, COHEN Y, et al. Development of micro-scale hollow fiber ultrafiltration membranes[J]. Journal of Membrane Science, 2011, 379(1/2): 370-377. DOI:10.1016/j.memsci.2011.06.011.
SHIBUYA M, PARK M J, LIM S, et al. Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination[J]. Desalination, 2018, 445: 63-74. DOI:10.1016/j.desal.2018.07.025.