Flavor substances endow foods with unique characteristics, which determine the aroma and taste sensory attributes of foods, directly affect food quality and reflect the characteristic quality and quality requirements of foods.Flavor substances play an important role in the research, production and consumption of foods, and deep research, development and utilization of flavor substances are important for the development of the food industry.In this paper, the definition and classification of flavor substances in foods are introduced, the synthesis mechanism of flavor substances through the fatty acid, amino acid, and carbohydrate metabolic pathways are elucidated, and the detection methods of flavor substances and their applications in the food processing industry are reviewed.Finally, the limitations of flavor substance detection are discussed and an outlook on future directions in this field is given.We hope that this review will provide directions for the development and utilization of food flavor substances.
HE W, REN F, WANG Y Q, et al. Application of GC-IMS in detection of food flavor substances[J]. IOP Conference Series Earth and Environmental Science, 2020, 545: 012030. DOI: 10.1088/1755-1315/545/1/012030.
LÜ W S, LIN T, REN Z Y, et al. Rapid discrimination of Citrus reticulata ‘Chachi’ by headspace-gas chromatography-ion mobility spectrometry fingerprints combined with principal component analysis[J]. Food Research International, 2020, 131: 108985. DOI: 10.1016/j.foodres.2020.108985.
SHARMILAN T, PREMARATHNE I, WANNIARACHCHI I, et al. Application of electronic nose to predict the optimum fermentation time for low-country Sri Lankan tea[J]. Journal of Food Quality, 2022, 2022: 7703352. DOI: 10.1155/2022/7703352.
SUN L B, ZHANG Z Y, XIN G, et al. Advances in umami taste and aroma of edible mushrooms[J]. Trends in Food Science and Technology, 2020, 96: 176-187. DOI: 10.1016/j.tifs.2019.12.018.
LIU S J, LIU Y, WANG T Y, et al. The effects of different light storage conditions on volatile flavor compounds and sensory properties of melon fruit[J]. Food Bioscience, 2022, 48: 101826. DOI: 10.1016/j.fbio.2022.101826.
FAN X J, JIAO X, LIU J G, et al. Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS[J]. Food Research International, 2021, 140: 109975. DOI: 10.1016/j.foodres.2020.109975.
WANG X, LI X W, SU M S, et al. The construction of volatile profiles of eight popular peach cultivars produced in Shanghai using GCMS and GC-IMS[J]. Horticulturae, 2023, 9(3): 382. DOI: 10.3390/horticulturae9030382.
LIU G M, WANG Y Q, HU L P, et al. Characterization of the volatile compounds of onion with different fresh-cut styles and storage temperatures[J]. Foods, 2022, 11(23): 3829. DOI: 10.3390/foods11233829.
MA N, GUAN R, ZHAO R T, et al. GC-IMS-based preliminary analysis of volatile flavor compounds in Ejiao at different processing stages[J]. Journal of Food Quality, 2022(2022): 3961593. DOI: 10.1155/2022/3961593.
DU D D, XU M, WANG J, et al. Tracing internal quality and aroma of a red-fleshed kiwifruit during ripening by means of GC-MS and E-nose[J]. RSC Advances, 2019, 9(37): 21164-21174. DOI: 10.1039/c9ra03506k.
LIU H C, YU Y S, ZOU B, et al. Evaluation of dynamic changes and regularity of volatile flavor compounds for different green plum(Prunus mume Sieb. et Zucc) varieties during the ripening process by HS-GC-IMS with PLS-DA[J]. Foods, 2023, 12(3): 551. DOI: 10.3390/foods12030551.
BOUKOBZA F, DUNPHY P J, TAYLOR A.J. Measurement of lipid oxidation-derived volatiles in fresh tomatoes[J]. Postharvest Biology and Technology, 23(2): 117-131. DOI: 10.1016/s0925-5214(01)00122-3.
FLAMINI G, TEBANO M, CIONI P L. Volatiles emission patterns of different plant organs and pollen of Citrus limon[J]. Analytica Chimica Acta, 2007, 589(1): 44-46. DOI: 10.1016/j.aca.2007.02.053.
ILLURI R, KUMAR M, EYINI M, et al. Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi[J]. Saudi Journal of Biological Sciences, 2021, 28(12): 7207-7218. DOI: 10.1016/j.sjbs.2021.08.026.
ARORA A, DAMODARAN S. Competitive binding of off-flavor compounds with soy protein and β-cyclodextrin in a ternary system: a model study[J]. Journal of the American Oil Chemists’ Society, 2010, 87(6): 673-679. DOI: 10.1007/s11746-009-1535-8.
IASSONOVA D R, JOHNSON L A, HAMMOND E G, et al. Evidence of an enzymatic source of off flavors in “lipoxygenase-null” soybeans[J]. Journal of the American Oil Chemists Society, 2009, 86(1): 59-64. DOI: 10.1007/s11746-008-1314-y.
JIA Z Y, WANG Y, WANG L, et al. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine[J]. Food Research International, 2022, 157: 111204. DOI: 10.1016/j.foodres.2022.111204.
HILDEBRANDT T M, NUNES NESI A, ARAÚJO W L, et al. Amino acid catabolism in plants[J]. Molecular Plant, 2015, 8(11): 1563-1579. DOI: 10.1016/j.molp.2015.09.005.
WANG L N, WANG Y Q, WANG W Z, et al. Comparison of volatile compositions of 15 different varieties of Chinese jujube (Ziziphus jujuba Mill.)[J]. Journal of Food Science and Technology, 2019, 56(3): 1631-1640. DOI: 10.1007/s13197-019-03689-7.
BICK J A, LANGE B M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane[J]. Archives of Biochemistry and Biophysics, 2003, 415(2): 146-154. DOI: 10.1016/S0003-9861(03)00233-9.
SCHWAB W, DAVIDOVICH-RIKANATI R, LEWINSOHN E. Biosynthesis of plant-derived flavor compounds[J]. The Plant Journal, 2008, 54(4): 712-732. DOI: 10.1111/j.1365-313X.2008.03446.x.
MACCARONE E, CAMPISI S, FALLICO B, et al. Flavor components of Italian orange juices[J]. Journal of Agricultural and Food Chemistry, 1998, 46(6): 2293-2298. DOI: 10.1021/jf970949d.
LIU H C, XU Y J, WU J J, et al. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons[J]. Food Research International, 2021, 150: 110784. DOI: 10.1016/j.foodres.2021.110784.
DALLÜGE J, BEENS J, BRINKMAN U A T, Comprehensive twodimensional gas chromatography: a powerful and versatile analytical tool[J]. Journal of Chromatography A, 2003, 1000(1/2): 69-108. DOI: 10.1016/S0021-9673(03)00242-5.
HUANG D M, MA F N, WU B, et al. Genome-wide association and expression analysis of the lipoxygenase gene family in Passiflora edulis revealing PeLOX4 might be involved in fruit ripeness and ester formation[J]. International Journal of Molecular Sciences, 2022, 23(20): 12496. DOI: 10.3390/ijms232012496.
XIAO R, CHEN S Q, WANG X Q, et al. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry[J]. LWT-Food Science and Technology, 2022, 170: 114000. DOI: 10.1016/j.lwt.2022.114000.
CAO X D, RU S J, FANG X G, et al. Effects of alcoholic fermentation on the non-volatile and volatile compounds in grapefruit (Citrus paradisi Mac. cv. Cocktail) juice: a combination of UPLC-MS/MS and gas chromatography ion mobility spectrometry analysis[J]. Frontiers in Nutrition, 2022, 9: 1015924. DOI: 10.3389/fnut.2022.1015924.
HLA B, JING W, ENVELOPE Y, et al. Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata ‘chachi’ peel at different collection periods using gas chromatography-ion mobility spectrometry[J]. LWT-Food Science and Technology, 2022, 171: 114126. DOI: 10.1016/j.lwt.2022.114126.
ZHANG K Y, GAO L D, ZHANG C, et al. Analysis of volatile flavor compounds of corn under different treatments by GC-MS and GCIMS[J]. Frontiers in Chemistry, 2022, 10: 725208. DOI: 10.1111/jfbc.13875.
WANG Z L, MI S, WANG X H, et al. Characterization and discrimination of fermented sweet melon juice by different microbial strains via GC-IMS-based volatile profiling and chemometrics[J]. Food Science and Human Wellness, 2023, 12(4): 1241-1247. DOI: 10.1016/j.fshw.2022.10.006.
ŠUKLJE K, CARLIN S, STANSTRUP J, et al. Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HSSPME-GC×GC-TOFMS[J]. Food Chemistry, 2019, 277: 753-765. DOI: 10.1016/j.foodchem.2018.10.135.
LU Y L, WANG Y F, ZHAO G Z, et al. Identification of aroma compounds in Zhuhoujiang, a fermented soybean paste in Guangdong China[J]. LWT-Food Science and Technology, 2021, 142(4): 111057. DOI: 10.1016/j.lwt.2021.111057.
CHEN Q C, YIN Z, DAI W D, et al. Aroma formation and dynamic changes during white tea processing[J]. Food Chemistry, 2019, 274: 915-924. DOI: 10.1016/j.foodchem.2018.09.072.
KIEFL J, POLLNER G, SCHIEBERLE P, et al. Sensomics analysis of key hazelnut odorants (Corylus avellana L. ‘Tonda Gentile’) using comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC×GC-TOF-MS)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(22): 5226-5235. DOI: 10.1021/jf400807w.
BRAGA S C G N, OLIVEIRA L F, HASHIMOTO J C, et al. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC×GC-QMS[J]. Microchemical Journal, 2018: S0026265X18304041. DOI: 10.1016/j.microc.2018.05.042.
SUGIMOTO M, OBIYA S, KANEKO M, et al. Metabolomic profiling as a possible reverse engineering tool for estimating processing conditions of dry-cured hams[J]. Journal of Agricultural and Food Chemistry, 2017, 65(2): 402-410. DOI: 10.1021/acs.jafc.6b03844
OGUZ I, OGUZ H I, KAFKAS N E. Evaluation of fruit characteristics of various organically-grown goji berry (Lycium barbarum L. Lycium chinense Miller) species during ripening stages[J]. Journal of Food Composition and Analysis, 2021(101): 103846. DOI: 10.1016/j.jfca.2021.103846.
DONG T T, XU Y Y, HUANG S J, et al. Effects of different fertilizer treatments on the sugar components of Huangguogan[J]. AIP Conference Proceedings, 2019, 2110(1): 020066. DOI: 10.1063/1.5110860.
BANDARA Y M A Y, TESSO T T, ZHANG K, et al. Charcoal rot and Fusarium stalk rot diseases influence sweet sorghum sugar attributes[J]. Industrial Crops and Products, 2018, 112: 188-195. DOI: 10.1016/j.indcrop.2017.11.012.
KAWAMURA S, IDA K, OSAWA M, et al. No effect of seed presence or absence on sugar content and water status of seeded and seedless watermelon fruits[J]. HortScience, 2018, 53(3): 304-312. DOI: 10.21273/HORTSCI12707-17.
SAHAMISHIRAZI S, MOEHRING J, CLAUPEIN W, et al. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content[J]. Food Chemistry, 2017, 214: 694-701. DOI: 10.1016/j.foodchem.2016.07.070.
ZHU W, BENKWITZ F, KILMARTIN P A. Volatile-based prediction of sauvignon blanc quality gradings with static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) and Interpretable machine learning techniques[J]. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3255-3265. DOI: 10.1021/acs.jafc.0c07899.
GUO S, ZHAO X Y, MA Y, et al. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS[J]. Food Chemistry, 2022, 369: 130939. DOI: 10.1016/j.foodchem.2021.130939.
ALVES V, GONALVES J, FIGUEIRA J A, et al. Beer volatile fingerprinting at different brewing steps[J]. Food Chemistry, 2020, 326: 126856. DOI: 10.1016/j.foodchem.2020.126856.
BACCOURI O, BENDINI A, CERRETANI L, et al. Comparative study on volatile compounds from Tunisian and Sicilian monovarietal virgin olive oils[J]. Food Chemistry, 2008, 111(2): 322-328. DOI:10.1016/j.foodchem.2008.03.066.