Objective: To compare the regulatory effects of adlay (Coix lachryma-jobi L.) seeds fermented and not fermented by Lactobacillus plantarum NCU137 on immune and intestinal mucosal barrier function in mice induced by cyclophosphamide (CTX). Methods: BALB/c mice were randomly divided into four groups, including normal, CTX-induced model, non-fermented adlay seed (NFC) and fermented adlay seed (FC) treatment. The mice in the normal and CTX groups were orally administrated with 0.2 mL of physiological saline for 10 days, while those in the NFC and FC groups 0.2 mL of non-fermented and fermented adlay seeds for 10 days, respectively. The immunosuppressed mouse model was established by daily intraperitoneal injection of 100 mg/kg of CTX for the last three days of the administration period, while the normal group was intraperitoneally injected with the same volume of normal saline. Spleen index, the number of spleen T lymphocyte subsets, and the levels of cytokines and immunoglobulin were measured, histopathological examination of the small intestine was performed and intestinal mucosal barrier function was detected. Results: Compared with the CTX group, fermented adlay seeds significantly increased the spleen and thymus indexes of immunosuppressed mice, up-regulated the cluster of differentiation (CD) 4+/CD8+ ratio of spleen T lymphocytes, down-regulated the levels of spleen pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), and increased serum immunoglobulin (Ig) M and IgG levels. Moreover, fermented adlay seeds repaired small intestinal mucosal structure and up-regulated the gene expression of Occludin and E-cadherin, and the effect was more pronounced than that of non-fermented adlay seeds. Conclusion: Coix lachryma-jobi L. seeds fermented by L. plantarum NCU137 have the potential to regulate immune and intestinal mucosal barrier function, which are expected to be developed into a novel health food with immunomodulatory function.
LIU X, ZHANG X, RONG Y Z, et al. Rapid determination of fat, protein and amino acid content in coix seed using near-infrared spectroscopy technique[J]. Food Analytical Methods, 2015, 8: 334-342. DOI:10.1007/s12161-014-9897-4.
MELINI F, MELINI V, LUZIATELLI F, et al. Health-promoting components in fermented foods: an up-to-date systematic review[J]. Nutrients, 2019, 11: 1189. DOI:10.3390/nu11051189.
GAO H, WEN J J, HU J L, et al. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats[J]. Carbohydrate Polymers, 2018, 201: 624-633. DOI:10.1016/j.carbpol.2018.08.075.
ZHANG Z H, FAN S T, HUANG D F, et al. Effect of Lactobacillus plantarum NCU116 fermentation on Asparagus officinalis polysaccharide: characterization, antioxidative, and immunoregulatory activities[J]. Journal of Agricultural and Food Chemistry, 2018, 66: 10703-10711. DOI:10.1021/acs.jafc.8b03220.
WAN Y J, XU M M, GILBERT R G, et al. Colloid chemistry approach to understand the storage stability of fermented carrot juice[J]. Food Hydrocolloids, 2019, 89: 623-630. DOI:10.1016/j.foodhyd.2018.11.017.
YIN H M, ZHONG Y D, XIA S K, et al. Effects of fermentation with Lactobacillus plantarum NCU137 on nutritional, sensory and stability properties of coix (Coix lachryma-jobi L.) seed[J]. Food Chemistry, 2020, 314: 126037. DOI:10.1016/j.foodchem.2019.126037.
WANG H, YIN H M, ZHONG Y D, et al. Polysaccharides from fermented coix seed modulates circulating nitrogen and immune function by altering gut microbiota[J]. Current Research in Food Science, 2022, 5: 1994-2003. DOI:10.1016/j.crfs.2022.10.007.
LI M Z, HUANG X J, HU J L, et al. The protective effects against cyclophosphamide (CTX)-induced immunosuppression of three glucomannans[J]. Food Hydrocolloids, 2020, 100: 105445. DOI:10.1016/j.foodhyd.2019.105445.
HAN L, MENG M, GUO M, et al. Immunomodulatory activity of a water-soluble polysaccharide obtained from highland barley on immunosuppressive mice models[J]. Food & Function, 2019, 10: 304-314. DOI:10.1039/C8FO01991F.
ZHANG W N, GONG L L, LIU Y, et al. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice[J]. Journal of Functional Foods, 2020, 69: 103942. DOI:10.1016/j.jff.2020.103942.
HUANG X J, NIE S P, CAI H L, et al. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): part Ⅳ. Immunomodulatory activity in vivo[J]. Journal of Functional Foods, 2015, 15: 525-532. DOI:10.1016/j.jff.2015.03.054.
HUO J Y, WU J H, ZHAO M M, et al. Immunomodulatory activity of a novel polysaccharide extracted from Huangshuion THP-1 cells through NO production and increased IL-6 and TNF-α expression[J]. Food Chemistry, 2020, 330: 127257. DOI:10.1016/j.foodchem.2020.127257.
HUYAN X H, LIN Y P, GAO T, et al. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice[J]. International Immunopharmacology, 2011, 11: 1293-1297. DOI:10.1016/j.intimp.2011.04.011.
HUANG L X, SHEN M Y, WU T, et al. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways[J]. International Journal of Biological Macromolecules, 2020, 152: 766-774. DOI:10.1016/j.ijbiomac.2020.02.318.
WANG Y L, MENG Q G, QIAO H Q, et al. Role of the spleen in cyclophosphamide-induced hematosuppression and extramedullary hematopoiesis in mice[J]. Archives of Medical Research, 2009, 40: 249-255. DOI:10.1016/j.arcmed.2009.04.003.
VAN MARK A, WEILER S W, SCHRÖDER M, et al. The impact of shift work induced chronic circadian disruption on IL-6 and TNF-α immune responses[J]. Journal of Occupational Medicine and Toxicology, 2010, 5: 18. DOI:10.1186/1745-6673-5-18.
SOBOTA R M, MULLER P J, KHOURI C, et al. SHPS-1/SIRP1α contributes to interleukin-6 signalling[J]. Cellular Signalling, 2008, 20: 1385-1391. DOI:10.1016/j.cellsig.2008.03.005.
MUTAPI F, WINBORN G, MIDZI N, et al. Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-γ, IL-4, IL-5 and IL-10 with age[J]. BMC Infectious Diseases, 2007, 7: 139. DOI:10.1186/1471-2334-7-139.
WANG H, WANG M Y, CHEN J, et al. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice[J]. International Immunopharmacology, 2011, 11: 1946-1953. DOI:10.1016/j.intimp.2011.06.006.
BAI R B, ZHANG Y J, FAN J M, et al. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice[J]. Food & Function, 2020, 11: 3306-3315. DOI:10.1039/C9FO02969A.
LI C P, DUAN S S, LI Y P, et al. Polysaccharides in natural products that repair the damage to intestinal mucosa caused by cyclophosphamide and their mechanisms: a review[J]. Carbohydrate Polymers, 2021, 261: 117876. DOI:10.1016/j.carbpol.2021.117876.
WANG J Y. Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function[J]. Inflammopharmacology, 2005, 13: 91-101. DOI:10.1163/156856005774423890.
SUZUKI T. Regulation of intestinal epithelial permeability by tight junctions[J]. Cellular and Molecular Life Sciences, 2013, 70: 631-659. DOI:10.1007/s00018-012-1070-x.
BONDOW B J, FABER M L, WOJTA K J, et al. E-cadherin is required for intestinal morphogenesis in the mouse[J]. Developmental Biology, 2012, 371(1): 1-12. DOI:10.1016/j.ydbio.2012.06.005,.
CHELAKKOT C, GHIM J, RYU S H. Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Experimental & Molecular Medicine, 2018, 50: 1-9. DOI:10.1038/s12276-018-0126-x.
YANG J, LIU K X, QU J M, et al. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice[J]. European Journal of Pharmacology, 2013, 714: 120-124. DOI:10.1016/j.ejphar.2013.06.006.
FAN S T, NIE S P, HUANG X J, et al. Protective properties of combined fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum on colon immune dysfunction[J]. International Journal of Biological Macromolecules, 2018, 114: 1049-1055. DOI:10.1016/j.ijbiomac.2018.04.004.