PDF (2.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Recent Progress on Methods for the Detection and Analysis of Psychrophilic Bacteria in Milk

Jie WU Nan ZHENGJiaqi WANGLu MENG ()
Key Laboratory of Quality Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Show Author Information

Abstract

Milk is an excellent medium for the growth of microorganisms, which is easily contaminated by microorganisms from the environment. Psychrophilic bacteria are the most common microorganisms in cold-stored raw milk. Moreover, psychrophilic bacteria produce heat-resistant proteases and lipases in low-temperature environments, which remain active even after heat treatment, and decompose proteins and fats in liquid milk during storage, thereby affecting the quality of milk. The counting method for psychrophilic bacteria in milk specified by the agricultural industry standard of China takes 10 days to culture samples at 6.5 ℃ for 10 days, which is time-consuming and has low application value in actual production. Therefore, the development of detection technologies for psychrophilic bacteria and their heat-resistant enzymes is very important for ensuring the quality of milk and dairy products. This article reviews a variety of methods for the identification and analysis of psychrophilic bacteria in milk, including polymerase chain reaction (PCR), sequencing, fluorescence in situ hybridization, and loop-mediated isothermal amplification. It provides a reference for the development of new detection technologies for psychrophilic bacteria in milk.

CLC number: TS207.4 Document code: A Article ID: 1002-6630(2024)13-0356-09

References

[1]

TAPONEN S, MCGUINNESS D, HIITIÖ H, et al. Bovine milk microbiome: a more complex issue than expected[J]. Veterinary Research, 2019, 50(1): 44. DOI:10.1186/s13567-019-0662-y.

[2]

FUSCO V, CHIEFFI D, FANELLI F, et al. Microbial quality and safety of milk and milk products in the 21st century[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4): 2013-2049. DOI:10.1111/1541-4337.12568.

[4]

YUAN H Z, HAN S F, ZHANG S F, et al. Microbial properties of raw milk throughout the year and their relationships to quality parameters[J]. Foods, 2022, 11(19): 3077. DOI:10.3390/foods11193077.

[5]

POGHOSSIAN A, GEISSLER H, SCHÖNING M J. Rapid methods and sensors for milk quality monitoring and spoilage detection[J]. Biosensors and Bioelectronics, 2019, 140: 111272. DOI:10.1016/j.bios.2019.04.040.

[6]

MARTIN N H, TORRES-FRENZEL P, WIEDMANN M. Invited review: controlling dairy product spoilage to reduce food loss and waste[J]. Journal of Dairy Science, 2021, 104(2): 1251-1261. DOI:10.3168/jds.2020-19130.

[9]

COUSIN M A. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review[J]. Journal of Food Protection, 1982, 45(2): 172-207. DOI:10.4315/0362-028X-45.2.172.

[10]

VITHANAGE N R, DISSANAYAKE M, BOLGE G, et al. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential[J]. International Dairy Journal, 2016, 57: 80-90. DOI:10.1016/j.idairyj.2016.02.042.

[11]

LAFARGE V, OGIER J C, GIRARD V, et al. Raw cow milk bacterial population shifts attributable to refrigeration[J]. Applied and Environmental Microbiology, 2004, 70(9): 5644-5650. DOI:10.1128/AEM.70.9.5644-5650.2004.

[14]

DU B Y, MENG L, LIU H M, et al. Single molecule real-time sequencing and traditional cultivation techniques reveal complex community structures and regional variations of psychrotrophic bacteria in raw milk[J]. Frontiers in Microbiology, 2022, 13: 853263. DOI:10.3389/fmicb.2022.853263.

[15]

YANG X Y, GUO X J, LIU W P, et al. The complex community structures and seasonal variations of psychrotrophic bacteria in raw milk in Heilongjiang province, China[J]. LWT-Food Science and Technology, 2020, 134: 110218. DOI:10.1016/j.lwt.2020.110218.

[18]

SCHOKKER E P, VAN BOEKEL M A J S. Production, purification and partial characterization of the extracellular proteinase from Pseudomonas fluorescens 22F[J]. International Dairy Journal, 1997, 7(4): 265-271. DOI:10.1016/S0958-6946(97)00008-3.

[20]

MAIER C, HOFMANN K, HUPTAS C, et al. Simultaneous quantification of the most common and proteolytic Pseudomonas species in raw milk by multiplex qPCR[J]. Applied Microbiology and Biotechnology, 2021, 105(4): 1693-1708. DOI:10.1007/s00253-021-11109-0.

[24]

OLIVERIA J S, PARMELEE C E. Rapid enumeration of psychrotrophic bacteria in raw and pasteurized milk[J]. Journal of Food Protection, 1976, 39(4): 269-272. DOI:10.4315/0022-2747-39.4.269.

[27]

MACHADO S G, DA SILVA F L, BAZZOLLI D M S, et al. Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk[J]. Journal of Food Science, 2015, 80(8): 1842-1849. DOI:10.1111/1750-3841.12957.

[28]

GUPTA N. DNA extraction and polymerase chain reaction[J]. Journal of Cytology, 2019, 36(2): 116-117. DOI:10.4103/JOC.JOC_110_18.

[29]

LAW J W F, AB MUTALIB N S, CHAN K G, et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations[J]. Frontiers in Microbiology, 2015, 5: 770. DOI:10.3389/fmicb.2014.00770.

[30]

KATHOLM J, OLESEN L T, PETERSEN A, et al. Evaluation of a new qPCR test to identify the organisms causing high total bacterial count in bulk tank milk[J]. Journal of Integrative Agriculture, 2018, 17(6): 1241-1245. DOI:10.1016/S2095-3119(17)61781-7.

[31]

DREIER M, MEOLA M, BERTHOUD H, et al. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota[J]. BMC Microbiology, 2022, 22(1): 48. DOI:10.1186/s12866-022-02451-y.

[32]

ZHONG X H, LIN C W, WANG J, et al. Advances in rapid detection methods for foodborne pathogens[J]. Journal of Microbiology and Biotechnology, 2014, 24(3): 297-312. DOI:10.4014/jmb.1310.10013.

[34]

HINDSON B J, NESS K D, MASQUELIER D A, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number[J]. Analytical Chemistry, 2011, 83(22): 8604-8610. DOI:10.1021/ac202028g.

[35]

SALIPANTE S J, JEROME K R. Digital PCR-an emerging technology with broad applications in microbiology[J]. Clinical Chemistry, 2020, 66(1): 117-123. DOI:10.1373/clinchem.2019.304048.

[36]

HADI J, RAPP D, DHAWAN S, et al. Molecular detection and characterization of foodborne bacteria: recent progresses and remaining challenges[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(3): 2433-2464. DOI:10.1111/1541-4337.13153.

[37]

BASANISI M G, LA BELLA G, NOBILI G, et al. Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in South Italy[J]. International Journal of Food Microbiology, 2022, 366: 109583. DOI:10.1016/j.ijfoodmicro.2022.109583.

[38]

MAURER J J. Rapid detection and limitations of molecular techniques[J]. Annual Review of Food Science and Technology, 2011, 2: 259-279. DOI:10.1146/annurev.food.080708.100730.

[39]

SHI Z H, LI X F, FAN X K, et al. PMA-qPCR method for the selective quantitation of viable lactic acid bacteria in fermented milk[J]. Frontiers in Microbiology, 2022, 13: 984506. DOI:10.3389/fmicb.2022.984506.

[40]

ZHOU P, XIE G Y, LIANG T B, et al. Rapid and quantitative detection of viable emetic Bacillus cereus by PMA-qPCR assay in milk[J]. Molecular and Cellular Probes, 2019, 47: 101437. DOI:10.1016/j.mcp.2019.101437.

[43]

REN Z Y, LI N, YU L L, et al. An Illumina MiSeq sequencing-based method using the mreB gene for high-throughput discrimination of Pseudomonas species in raw milk[J]. LWT-Food Science and Technology, 2022, 163: 113573. DOI:10.1016/j.lwt.2022.113573.

[44]

XIONG Z Q, LI Y Y, XIANG Y W, et al. Short communication: dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing[J]. Journal of Dairy Science, 2020, 103(7): 5972-5977. DOI:10.3168/jds.2019-18064.

[45]

MCHUGH A J, FEEHILY C, FENELON M A, et al. Tracking the dairy microbiota from farm bulk tank to skimmed milk powder[J]. mSystems, 2020, 5(2): e00226-20. DOI:10.1128/mSystems.00226-20.

[46]

ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome Biology, 2013, 14(7): 405. DOI:10.1186/gb-2013-14-6-405.

[47]

SUN Y, ZHAO L X, CAI H Y, et al. Composition and factors influencing community structure of lactic acid bacterial in dairy products from Nyingchi Prefecture of Tibet[J]. Journal of Bioscience and Bioengineering, 2023, 135(1): 44-53. DOI:10.1016/j.jbiosc.2022.10.009.

[49]

GUO X C, YU Z J, ZHAO F Y, et al. Both sampling seasonality and geographic origin contribute significantly to variations in raw milk microbiota, but sampling seasonality is the more determining factor[J]. Journal of Dairy Science, 2021, 104(10): 10609-10627. DOI:10.3168/jds.2021-20480.

[50]

ZHANG M, DANG N, REN D Y, et al. Comparison of bacterial microbiota in raw mare’s milk and koumiss using PacBio single molecule real-time sequencing technology[J]. Frontiers in Microbiology, 2020, 11: 581610. DOI:10.3389/fmicb.2020.581610.

[53]

DECIMO M, MORANDI S, SILVETTI T, et al. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk[J]. Journal of Food Science, 2014, 79(10): 2081-2090. DOI:10.1111/1750-3841.12645.

[54]

RANDAZZO C L, VAUGHAN E E, CAGGIA C. Artisanal and experimental Pecorino Siciliano cheese: microbial dynamics during manufacture assessed by culturing and PCR-DGGE analyses[J]. International Journal of Food Microbiology, 2006, 109(1/2): 1-8. DOI:10.1016/j.ijfoodmicro.2005.11.002.

[56]

KOTHE C I, MOHELLIBI N, RENAULT P. Revealing the microbial heritage of traditional Brazilian cheeses through metagenomics[J]. Food Research International, 2022, 157: 111265. DOI:10.1016/j.foodres.2022.111265.

[58]

BENO S M, CHENG R A, ORSI R H, et al. Paenibacillus odorifer, the predominant Paenibacillus species isolated from milk in the United States, demonstrates genetic and phenotypic conservation of psychrotolerance but clade-associated differences in nitrogen metabolic pathways[J]. mSphere, 2020, 5(1): e00739-19. DOI:10.1128/mSphere.00739-19.

[59]

FERGESTAD M E, TOUZAIN F, DE VLIEGHER S, et al. Whole genome sequencing of staphylococci isolated from bovine milk samples[J]. Frontiers in Microbiology, 2021, 12: 715851. DOI:10.3389/fmicb.2021.715851.

[60]

YAMAGUCHI N, KITAGUCHI A, NASU M. Selective enumeration of viable Enterobacteriaceae and Pseudomonas spp. in milk within 7 h by multicolor fluorescence in situ hybridization following microcolony formation[J]. Journal of Bioscience and Bioengineering, 2012, 113(6): 746-750. DOI:10.1016/j.jbiosc.2012.01.009.

[61]

WNUK M, LEWINSKA A. Imaging flow cytometry-based analysis of bacterial profiles in milk samples[J]. Food and Bioproducts Processing, 2021, 128: 102-108. DOI:10.1016/j.fbp.2021.04.019.

[62]

HOLM C, MATHIASEN T, JESPERSEN L. A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk[J]. Journal of Applied Microbiology, 2004, 97(5): 935-941. DOI:10.1111/j.1365-2672.2004.02346.x.

[64]

GRIESCHE C, BAEUMNER A J. Biosensors to support sustainable agriculture and food safety[J]. TrAC Trends in Analytical Chemistry, 2020, 128: 115906. DOI:10.1016/j.trac.2020.115906.

[65]

BAI X K, HUANG J, LI W Q, et al. Portable dual-mode biosensor based on smartphone and glucometer for on-site sensitive detection of Listeria monocytogenes[J]. Science of the Total Environment, 2023, 874: 162450. DOI:10.1016/j.scitotenv.2023.162450.

[67]

MORANDI S, PICA V, MASOTTI F, et al. Proteolytic traits of psychrotrophic bacteria potentially causative of sterilized milk instability: genotypic, phenotypic and peptidomic insight[J]. Foods, 2021, 10(5): 934. DOI:10.3390/foods10050934.

[68]

DU B Y, MENG L, LIU H M, et al. Diversity and proteolytic activity of Pseudomonas species isolated from raw cow milk samples across China[J]. Science of the Total Environment, 2022, 838: 156382. DOI:10.1016/j.scitotenv.2022.156382.

[69]

MARCHAND S, VANDRIESCHE G, COOREVITS A, et al. Heterogeneity of heat-resistant proteases from milk Pseudomonas species[J]. International Journal of Food Microbiology, 2009, 133(1/2): 68-77. DOI:10.1016/j.ijfoodmicro.2009.04.027.

[70]

LIAO C H, MCCALLUS D E. Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091[J]. Applied and Environmental Microbiology, 1998, 64(3): 914-921. DOI:10.1128/AEM.64.3.914-921.1998.

[71]

ZHANG C Y, BIJL E, SVENSSON B, et al. The extracellular protease AprX from Pseudomonas and its spoilage potential for UHT milk: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 834-852. DOI:10.1111/1541-4337.12452.

[72]

MACHADO S G, BAGLINIÈRE F, MARCHAND S, et al. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products[J]. Frontiers in Microbiology, 2017, 8: 302. DOI:10.3389/fmicb.2017.00302.

[73]

MAIER C, HUPTAS C, VON NEUBECK M, et al. Genetic organization of the aprX-lipA2 operon affects the proteolytic potential of Pseudomonas species in milk[J]. Frontiers in Microbiology, 2020, 11: 1190. DOI:10.3389/fmicb.2020.01190.

[74]

WANG Y, SUN J L, DENG Y W, et al. Whey protein influences the production and activity of extracellular protease from Pseudomonas fluorescens W3[J]. LWT-Food Science and Technology, 2022, 154: 112865. DOI:10.1016/j.lwt.2021.112865.

[75]

NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): e63. DOI:10.1093/nar/28.12.e63.

[76]

FU S J, QU G G, GUO S J, et al. Applications of loop-mediated isothermal DNA amplification[J]. Applied Biochemistry and Biotechnology, 2011, 163(7): 845-850. DOI:10.1007/s12010-010-9088-8.

[77]

HU L X, ZHANG S F, XUE Y L, et al. Rapid identification of Pseudomonas fluorescens harboring thermostable alkaline protease by real-time loop-mediated isothermal amplification[J]. Journal of Food Protection, 2022, 85(3): 414-423. DOI:10.4315/JFP-21-272.

[78]

ZHANG S F, HU L X, XUE Y L, et al. Development of a realtime loop-mediated isothermal amplification method for monitoring Pseudomonas lurida in raw milk throughout the year of pasture[J]. Frontiers in Microbiology, 2023, 14: 1133077. DOI:10.3389/fmicb.2023.1133077.

[79]

STUKNYTĖ M, DECIMO M, COLZANI M, et al. Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins[J]. Journal of Dairy Science, 2016, 99(6): 4188-4195. DOI:10.3168/jds.2016-10894.

[80]

VOLK V, GRAW N, STRESSLER T, et al. An indirect ELISA system for the detection of heat-stable Pseudomonas endopeptidases (AprX) in milk[J]. Journal of Dairy Science, 2021, 104(5): 5185-5196. DOI:10.3168/jds.2020-19790.

[81]

ZHANG C Y, BIJL E, HETTINGA K. Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin[J]. Food Chemistry, 2018, 263: 127-134. DOI:10.1016/j.foodchem.2018.04.128.

[82]

D’INCECCO P, BRASCA M, ROSI V, et al. Bacterial proteolysis of casein leading to UHT milk gelation: an applicative study[J]. Food Chemistry, 2019, 292: 217-226. DOI:10.1016/j.foodchem.2019.04.066.

[83]

D’INCECCO P, ROSI V, FORTINA M G, et al. Biochemical, microbiological, and structural evaluations to early detect age gelation of milk caused by proteolytic activity of Pseudomonas fluorescens[J]. European Food Research and Technology, 2022, 248(8): 2097-2107. DOI:10.1007/s00217-022-04033-8.

[84]

MACHADO S G, HEYNDRICKX M, DE BLOCK J, et al. Identification and characterization of a heat-resistant protease from Serratia liquefaciens isolated from Brazilian cold raw milk[J]. International Journal of Food Microbiology, 2016, 222: 65-71. DOI:10.1016/j.ijfoodmicro.2016.01.014.

[85]

BAGLINIÈRE F, SALGADO R L, SALGADO C A, et al. Biochemical characterization of an extracellular heat-stable protease from Serratia liquefaciens isolated from raw milk[J]. Journal of Food Science, 2017, 82(4): 952-959. DOI:10.1111/1750-3841.13660.

[87]

XIN L, ZHANG L W, MENG Z X, et al. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from North China[J]. Journal of Dairy Science, 2017, 100(10): 7802-7811. DOI:10.3168/jds.2017-12740.

Food Science
Pages 356-364
Cite this article:
WU J, ZHENG N, WANG J, et al. Recent Progress on Methods for the Detection and Analysis of Psychrophilic Bacteria in Milk. Food Science, 2024, 45(13): 356-364. https://doi.org/10.7506/spkx1002-6630-20230614-119
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return