Lycium ruthenicum Murr. polysaccharide (LRMP) was obtained by hot water extraction, its structural parameters such as monosaccharide composition, glycosidic linkages and chain conformation were analyzed, and its protective effect on ethanol-inducedinjuryin gastric mucosal epithelial cells (GES-1) was evaluated. The results showed that LRMP was composed of arabinose, xylose, galactose, glucose, fucose and galacturonic acid, and its terminus mainly consisted of arabinose, xylose, glucose and galactose residues. In aqueous solution, LRMP presented a typical random coil conformation with a mean square radius of (80.4 ± 1.0) nm. LRMP had no toxic effect on GES-1 cells, and 600 μg/mL LRMP could significantly ameliorate ethanol-induced damage, restore intracellular superoxide dismutase (SOD) activity, and reduce apoptosis rate in GES-1 cells. In conclusion, LRMP has potential application as a functional polysaccharide in the development of health foods.
CHEN S S, ZHOU H N, ZHANG G, et al. Anthocyanins from Lycium ruthenicum Murr. ameliorated D-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 3140-3149. DOI:10.1021/acs.jafc.8b06402.
NI W H, GAO T T, WANG H L, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants[J]. Journal of Ethnopharmacology, 2013, 150(2): 529-535. DOI:10.1016/j.jep.2013.08.055.
LIU Z G, DANG J, WANG Q L, et al. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity[J]. International Journal of Biological Macromolecules, 2013, 61: 127-134. DOI:10.1016/j.ijbiomac.2013.06.042.
SHARMA R, RAGHUVANSHI R, KUMAR R, et al. Current findings and future prospective of high-value trans Himalayan medicinal plant Lycium ruthenicum Murr: a systematic review[J]. Clinical Phytoscience, 2022, 8(1): 1-20. DOI:10.1186/s40816-021-00328-7.
YAO R Y, HUANG C, CHEN X F, et al. Two complement fixing pectic polysaccharides from pedicel of Lycium barbarum L. promote cellular antioxidant defense[J]. International Journal of Biological Macromolecules, 2018, 112: 356-363. DOI:10.1016/j.ijbiomac.2018.01.207.
YUN D W, YAN Y M, LIU J. Isolation, structure and biological activity of polysaccharides from the fruits of Lycium ruthenicum Murr: a review[J]. Carbohydrate Polymers, 2022, 291: 119618. DOI:10.1016/j.carbpol.2022.119618.
LV X P, WANG C J, CHENG Y, et al. Isolation and structural characterization of a polysaccharide LRP4-A from Lycium ruthenicum Murr.[J]. Carbohydrate Research, 2013, 365: 20-25. DOI:10.1016/j.carres.2012.10.013.
PENG Q, SONG J J, LV X P, et al. Structural characterization of an arabinogalactan-protein from the fruits of Lycium ruthenicum[J]. Journal of Agricultural and Food, 2012, 60(37): 9424-9429. DOI:10.1021/jf302619c.
BUJANDA L. The effects of alcohol consumption upon the gastrointestinal tract[J]. The American Journal of Gastroenterology, 2000, 95(12): 3374-3382. DOI:10.1111/j.1572-0241.2000.03347.x.
LIAO B W, ZHOU C H, LIU T T, et al. A novel Hericium erinaceus polysaccharide: structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells[J]. International Journal of Biological Macromolecules, 2020, 154: 1460-1470. DOI:10.1016/j.ijbiomac.2019.11.027.
YANG K, LU T T, ZHAN L H, et al. Physicochemical characterization of polysaccharide from the leaf of Dendrobium officinale and effect on LPS induced damage in GES-1 cell[J]. International Journal of Biological Macromolecules, 2020, 149: 320-330. DOI:10.1016/j.ijbiomac.2020.01.026.
DING Y F, ZHANG R Q, LI B Q, et al. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells[J]. Environmental Pollution, 2021, 280: 116974. DOI:10.1016/j.envpol.2021.116974.
PICTON L, BATAILLE I, MULLER G. Analysis of a complex polysaccharide (gum arabic) by multi-angle laser light scattering coupled on-line to size exclusion chromatography and flow field flow fractionation[J]. Carbohydrate Polymers, 2000, 42(1): 23-31. DOI:10.1016/S0144-8617(99)00139-3.
BURCHARD W. Solution properties of branched macromolecules[J]. Advances in Polymer Science, 1999, 143(1): 113-194. DOI:10.1002/app.1992.070510005.
MORRIS G A, ADAMS G G, HARDING S E. On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: a short review[J]. Food Hydrocolloids, 2014, 42(3): 318-334. DOI:10.1016/j.foodhyd.2014.04.014.
LU K Y, JHENG P R, LU L S, et al. Enhanced anticancer effect of ROS-boosted photothermal therapy by using fucoidan-coated polypyrrole nanoparticles[J]. International Journal of Biological Macromolecules, 2021, 166: 98-107. DOI:10.1016/j.ijbiomac.2020.10.091.
XU H H, WANG H. Immune cells in alcohol-related liver disease[J]. Liver Research, 2022, 6(1): 1-9. DOI:10.1016/j.livres.2022.01.001.
VARAN H D, BAY M, OZTURK A, et al. Comparison of the methods evaluating post thawing viability of peripheral blood stem cell graft[J]. Transfusion and Apheresis Science, 2019, 58(2): 192-195. DOI:10.1016/j.transci.2019.03.016.
MUSLIM M, KAMAAL S, AHMAD M, et al. Structural elucidation and cytotoxicity profile of neocuproine-Cu(Ⅱ) and Cu(Ⅰ)-based chemotherapeutic agents: effect of picric acid-derived cocrystals[J]. Polyhedron, 2022, 220: 115848. DOI:10.1016/j.poly.2022.115848.
AREDIA F, CZAPLINSKI S, FULDA S, et al. Molecular features of the cytotoxicity of an NHE inhibitor: evidence of mitochondrial alterations, ROS overproduction and DNA damage[J]. BMC Cancer, 2016, 16(1): 851. DOI:10.1186/s12885-016-2878-9.