PDF (3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Probiotics and Their Metabolites Alleviate Type 2 Diabetes Mellitus by Regulating Glucagon-Like Peptide-1: A Review of Recent Research

Zhiliang CHENG1 Yulong ZHANG1Han YANG1Hui HA1Yingdi WANG1Feifei CHEN1Fei LIU1 ()Yuehua JIAO2 ()
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
Show Author Information

Abstract

Type 2 diabetes mellitus (T2DM), a chronic metabolic disease caused by an imbalance between carbohydrate intake and metabolism, is one of the most difficult metabolic diseases to treat worldwide. The main symptoms of T2DM include hyperglycemia, insufficient insulin secretion, insulin resistance, polydipsia and polyuria. T2DM is often accompanied by many complications such as atherosclerosis, renal function injury and non-alcoholic fatty liver disease. Glucagon-like peptide-1 (GLP-1) is a polypeptide composed of 31 amino acids, which is mainly used to maintain glucose homeostasis in vivo and relieve T2DM. However, its half-life is short and it is easily degraded in vivo. This article introduces probiotics and their metabolites that regulate GLP-1 in the host, and also discusses the alleviative effect of GLP-1 on T2DM, including the association between GLP-1 and T2DM, the clinical application of metformin and GLP-1 agonists, the insufficiency of GLP-1 in alleviating T2DM and the regulation of the GLP-1 content by related prebiotics. Finally, the regulatory mechanisms of probiotics and their metabolites on GLP-1, including short-chain fatty acids, bile acids (BAs), tryptophan and its derivatives and extracellular polysaccharides, are summarized in order to provide some references for studies on the regulatory effects of probiotics and their metabolites on GLP-1 production and release in the host as well as their alleviative effects on T2DM.

CLC number: R587.1 Document code: A Article ID: 1002-6630(2024)12-0292-12

References

[1]

ZHANG G X, MENG L L, GUO J H, et al. Exposure to novel brominated and organophosphate flame retardants and associations with type 2 diabetes in East China: a case-control study[J]. Science of the Total Environment, 2023, 871: 162107. DOI:10.1016/j.scitotenv.2023.162107.

[2]

NUZZO A, BRIGNOLI A, PONZIANI M C, et al. Aging and comorbidities influence the risk of hospitalization and mortality in diabetic patients experiencing severe hypoglycemia[J]. Nutrition Metabolism and Cardiovascular Diseases, 2022, 32(1): 160-166. DOI:10.1016/j.numecd.2021.09.016.

[3]

PANDEY A, CHAWLA S, GUCHHAIT P. Type-2 diabetes: current understanding and future perspectives[J]. IUBMB Life, 2015, 67(7): 506-513. DOI:10.1002/iub.1396.

[8]

GRIGSBY A B, ANDERSON R J, FREEDLAND K E, et al. Prevalence of anxiety in adults with diabetes: a systemic review[J]. Journal of Psychosomatic Research, 2002, 53(6): 1053-1060. DOI:10.1016/S0022-3999(02)00417-8.

[9]

ROSENSTOCK J, FONSECA V, SCHINZEL S, et al. Reduced risk of hypoglycemia with once-daily glargine versus twice-daily NPH and number needed to harm with NPH to demonstrate the risk of one additional hypoglycemic event in type 2 diabetes: evidence from a long-term controlled trial[J]. Journal of Diabetes and Its Complications, 2014, 28(5): 742-749. DOI:10.1016/j.jdiacomp.2014.04.003.

[10]

WANG C P, CHUNG F M, SHIN S J, et al. Congenital and environmental factors associated with adipocyte dysregulation as defects of insulin resistance[J]. The Review of Diabetic Studies, 2007, 4(2): 77-84. DOI:10.1900/RDS.2007.4.77.

[11]

XIAO M X, LU C H, TA N, et al. Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy[J]. Biomedical Signal Processing and Control, 2022, 71: 103236. DOI:10.1016/j.bspc.2021.103236.

[12]

BABU S N, GOVINDARAJAN S, VIJAYALAKSHMI M A, et al. Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/polypeptide fraction of aloe vera in streptozotocin-induced diabetic wistar rats[J]. Journal of Ethnopharmacology, 2021, 272: 113949. DOI:10.1016/j.jep.2021.113949.

[13]

FRKIC R L, RICHTER K, BRUNING J B. The therapeutic potential of inhibiting PPARγ phosphorylation to treat type 2 diabetes[J]. Journal of Biological Chemistry, 2021, 297(3): 101030. DOI:10.1016/j.jbc.2021.101030.

[14]

CHOI J H, BANKS A S, ESTALL J L, et al. Obesity-linked phosphorylation of PPARγ by cdk5 is a direct target of the anti-diabetic PPARγ ligands[J]. Nature, 2010, 466: 451. DOI:10.1038/nature09291.

[15]

SEFEROVI P M, PETRIE M C, FILIPPATOS G S, et al. Type 2 diabetes mellitus and heart failure: a position statement from the heart failure association of the European society of cardiology[J]. European Journal of Heart Failure, 2018, 20(Suppl 1): 853-872. DOI:10.1002/ejhf.1170.

[21]

WANG Y M, DILIDAXI D, WU Y C, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J]. Biomedicine & Pharmacotherapy, 2020, 125: 109914. DOI:10.1016/j.biopha.2020.109914.

[22]

LAYDEN B T, ANGUEIRA A R, BRODSKY M, et al. Short chain fatty acids and their receptors: new metabolic targets[J]. Translational Research, 2013, 161(3): 131-140. DOI:10.1016/j.trsl.2012.10.007.

[23]

STADTMAN E R, BERLETT B S. Reactive oxygen-mediated protein oxidation in aging and disease[J]. Drug Metabolism Reviews, 1998, 30(2): 225-243. DOI:10.3109/03602539808996310.

[24]

KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. DOI:10.1016/j.cell.2016.05.041.

[26]

GENUA F, MIRKOVIĆ B, MULLEE A, et al. Association of circulating short chain fatty acid levels with colorectal adenomas and colorectal cancer[J]. Clinical Nutrition ESPEN, 2021, 46: 297-304. DOI:10.1016/j.clnesp.2021.09.740.

[27]

DEN BESTEN G, VAN EUNEN K, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. Journal of Lipid Research, 2013, 54(9): 2325-2340. DOI:10.1194/jlr.R036012.

[28]

BEDFORD A, GONG J. Implications of butyrate and its derivatives for gut health and animal production[J]. Animal Nutrition, 2018, 4(2): 151-159. DOI:10.1016/j.aninu.2017.08.010.

[29]

DE VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1): 84-96. DOI:10.1016/j.cell.2013.12.016.

[30]

MITHIEUX G. Nutrient control of energy homeostasis via gut-brain neural circuits[J]. Neuroendocrinology, 2014, 100(2/3): 89-94. DOI:10.1159/000369070.

[31]

WANG A H, SI H W, LIU D M, et al. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells[J]. Journal of Nutrition, 2012, 142(1): 1-6. DOI:10.3945/jn.111.148155.

[32]

PODOLIAN J N. Effect of probiotics on the chemical, mineral, and amino acid composition of broiler chicken meat[J]. Ukrainian Journal of Ecology, 2017, 7(1): 61-65. DOI:10.15421/2017.

[33]

WANG S Y, LI M, LIN H, et al. Amino acids, microbiota-related metabolites, and the risk of incident diabetes among normoglycemic Chinese adults: findings from the 4C study[J]. Cell Reports Medicine, 2022, 3(9): 100727. DOI:10.1016/j.xcrm.2022.100727.

[34]

MARTINO M R, GUTIÉRREZ-AGUILAR M, YIEW N K H, et al. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids[J]. Cell Reports, 2022, 39(4): 111633. DOI:10.1016/j.celrep.2022.111633.

[35]

BRÖER S. Amino acid transporters as modulators of glucose homeostasis[J]. Trends in Endocrinology & Metabolism, 2022, 33(2): 120-135. DOI:10.1016/j.tem.2021.11.004.

[36]
TAKADA A, SHIMIZU F, MASUDA J, et al. Plasma levels of tryptophan metabolites in patients of type 2 diabetes mellitus[M]//WATSON R R, PREEDY V R. Bioactive food as dietary interventions for diabetes. Academic Press, 2019: 265-276. DOI: 10.1016/B978-0-12-813822-9.00017-5.
[37]

AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host & Microbe, 2018, 23(6): 716-724. DOI:10.1016/j.chom.2018.05.003.

[38]

WANG Q C, WEI M S, ZHANG J J, et al. Structural characteristics and immune-enhancing activity of an extracellular polysaccharide produced by marine Halomonas sp. 2E1[J]. International Journal of Biological Macromolecules, 2021, 183: 1660-1668. DOI:10.1016/j.ijbiomac.2021.05.143.

[40]

AL-DHABI N A, ESMAIL G A, ARASU M V. Sustainable conversion of palm juice wastewater into extracellular polysaccharides for absorption of heavy metals from Saudi Arabian wastewater[J]. Journal of Cleaner Production, 2020, 277: 124252. DOI:10.1016/j.jclepro.2020.124252.

[41]

HASHEMI S M B, ABEDI E, KAVEH S, et al. Hypocholesterolemic, antidiabetic and bioactive properties of ultrasound-stimulated exopolysaccharide produced by Lactiplantibacillus plantarum strains[J]. Bioactive Carbohydrates and Dietary Fibre, 2022, 28: 100334. DOI:10.1016/j.bcdf.2022.100334.

[42]

HUANG Z H, LIN F X, ZHU X Y, et al. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway[J]. International Journal of Biological Macromolecules, 2020, 143: 775-784. DOI:10.1016/j.ijbiomac.2019.09.137.

[43]

WANG J B, YU L Y, ZENG X, et al. Screening of probiotics with efficient α-glucosidase inhibitory ability and study on the structure and function of its extracellular polysaccharide[J]. Food Bioscience, 2022, 45: 101452. DOI:10.1016/j.fbio.2021.101452.

[44]

ZHOU W T, CHEN G J, CHEN D, et al. The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota[J]. Journal of Functional Foods, 2020, 75: 104222. DOI:10.1016/j.jff.2020.104222.

[45]

ZHANG M, ZENG S Y, HAO L Y, et al. Structural characterization and bioactivity of novel exopolysaccharides produced by Tetragenococcus halophilus[J]. Food Research International, 2022, 155: 111083. DOI:10.1016/j.foodres.2022.111083.

[46]

ANTUNES S, FREITAS F, ALVES V D, et al. Conversion of cheese whey into a fucose-and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47[J]. Journal of Biotechnology, 2015, 210: 1-7. DOI:10.1016/j.jbiotec.2015.05.013.

[47]

MASKE B L, DE MELO PEREIRA G V, VALE A S, et al. A review on enzyme-producing lactobacilli associated with the human digestive process: from metabolism to application[J]. Enzyme and Microbial Technology, 2021, 149: 109836. DOI:10.1016/j.enzmictec.2021.109836.

[48]

AHIRE J J, MOKASHE N U, PATIL H J, et al. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6[J]. Journal of Food Science & Technology, 2013, 50: 26-34. DOI:10.1007/s13197-011-0244-0.

[49]

JONES R M, DESAI C, DARBY T M, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway[J]. Cell Reports, 2015, 12(8): 1217-1225. DOI:10.1016/j.celrep.2015.07.042.

[50]

HU X, ZENG J R, SHEN F, et al. Citrus pomace fermentation with autochthonous probiotics improves its nutrient composition and antioxidant activities[J]. LWT-Food Science and Technology, 2022, 157: 113076. DOI:10.1016/j.lwt.2022.113076.

[51]

SIVAMARUTHI B S, FERN L A, ISMAIL N R, et al. The influence of probiotics on bile acids in diseases and aging[J]. Biomedicine & Pharmacotherapy, 2020, 128: 110310. DOI:10.1016/j.biopha.2020.110310.

[52]

LI R, ANDREU-SÁNCHEZ S, KUIPERS F, et al. Gut microbiome and bile acids in obesity-related diseases[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2021, 35(3): 101493. DOI:10.1016/j.beem.2021.101493.

[53]

ŠARENAC, TANJA M, MIKOV M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients[J]. Frontiers in Pharmacology, 2018, 9: 939. DOI:10.3389/fphar.2018.00939.

[54]

HE B H, JIANG J P, SHI Z, et al. Pure total flavonoids from citrus attenuate non-alcoholic steatohepatitis via regulating the gut microbiota and bile acid metabolism in mice[J]. Biomedicine & Pharmacotherapy, 2021, 135: 111183. DOI:10.1016/j.biopha.2020.111183.

[55]

MOLINARO A, WAHLSTRÖM A, MARSCHALL H U. Role of bile acids in metabolic control[J]. Trends in Endocrinology and Metabolism, 2018, 29(1): 31. DOI:10.1016/j.tem.2017.11.002.

[56]

SUN X L, ZHANG Z Y, LIU M Y, et al. Small-molecule albumin ligand modification to enhance the anti-diabetic ability of GLP-1 derivatives[J]. Biomedicine & Pharmacotherapy, 2022, 148: 112722. DOI:10.1016/j.biopha.2022.112722.

[57]

MODEL J, ROCHA D S, FAGUNDES A, et al. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals[J]. Veterinary and Animal Science, 2022, 16: 100245. DOI:10.1016/j.vas.2022.100245.

[58]
LARSEN B, MIKKELSEN J, NEVE S. Novel peptide agonists of GLP-1 activity: U.S. Patent Application: 10/291,226[P]. 2004-6-3.
[59]

PEGAH A, ABBASI-OSHAGHI E, KHODADADI I, et al. Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats[J]. Metabolism Open, 2021, 10: 100093. DOI:10.1016/j.metop.2021.100093.

[60]

RASMUSSEN C B, LINDENBERG S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study[J]. Frontiers in Endocrinology, 2014, 5: 140. DOI:10.3389/fendo.2014.00140.

[61]

DRUCKER D. GLP-1 physiology informs the pharmacotherapy of obesity[J]. Molecular Metabolism, 2021, 57: 101351. DOI:10.1016/j.molmet.2021.101351.

[63]

KLEIN S, GASTALDELLI A, YKI-JÄRVINEN H, et al. Why does obesity cause diabetes?[J]. Cell Metabolism, 2022, 34(1): 11-20. DOI:10.1016/j.cmet.2021.12.012.

[64]

SOTY M, VISA M, SORIANO S, et al. Involvement of ATP-sensitive potassium (KATP) channels in the loss of beta-cell function induced by human islet amyloid polypeptide[J]. Journal of Biological Chemistry, 2011, 286(47): 40857-40866. DOI:10.1074/jbc.M111.232801.

[66]

MJBVB A, EJMVB A, MMS A, et al. Whole-body insulin clearance in people with type 2 diabetes and normal kidney function: relationship with glomerular filtration rate, renal plasma flow, and insulin sensitivity[J]. Journal of Diabetes and Its Complications, 2022, 36(4): 108166. DOI:10.1016/j.jdiacomp.2022.108166.

[67]

LEE S A, KIM Y R, YANG E J, et al. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus[J]. The Journal of Clinical Endocrinology & Metabolism, 2013, 98(6): 2553-2561. DOI:10.1210/jc.2012-4288.

[68]

ASHRAF A, MUDGIL P, PALAKKOTT A, et al. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on DPP-IV and insulin receptor activity[J]. Journal of Dairy Science, 2020, 104(1): 61-77. DOI:10.3168/jds.2020-18627.

[71]

SHETTY R, BASHEER F T, POOJARI P G, et al. Adverse drug reactions of GLP-1 agonists: a systematic review of case reports[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2022, 16(3): 102427. DOI:10.1016/j.dsx.2022.102427.

[72]

SHARMA D, VERMA S, VAIDYA S, et al. Recent updates on GLP-1 agonists: current advancements & challenges[J]. Biomedicine & Pharmacotherapy, 2018, 108: 952-962. DOI:10.1016/j.biopha.2018.08.088.

[73]

YANG J, WANG Z M, ZHENG X L, et al. GLP-1 receptor agonist impairs keratinocytes inflammatory signals by activating AMPK[J]. Experimental and Molecular Pathology, 2019, 107: 124-128. DOI:10.1016/j.yexmp.2019.01.014.

[74]

ZHENG X M, LI Y, LI X, et al. Peptide complex containing GLP-1 exhibited long-acting properties in the treatment of type 2 diabetes[J]. Diabetes Research & Clinical Practice, 2011, 93(3): 410-420. DOI:10.1016/j.diabres.2011.05.021.

[75]

BOLAND B B, LAKER R C, O’BRIEN S, et al. Peptide-YY3-36/glucagon-like peptide-1 combination treatment of obese diabetic mice improves insulin sensitivity associated with recovered pancreatic β-cell function and synergistic activation of discrete hypothalamic and brainstem neuronal circuitries[J]. Molecular Metabolism, 2022, 55: 101392. DOI:10.1016/j.molmet.2021.101392.

[76]
OH S, LEE M, KO K. GLP-1 gene delivery for the treatment of type 2 diabetes: US20080074865[P]. 2009-09-10.
[77]

LI X, BAI L J, ZHANG Y H, et al. Novel GLP-1/anti-apolipoprotein B bifunctional fusion protein alleviates diabetes and diabetic complications in combination with low-intensity ultrasound[J]. Life Sciences, 2021, 278: 119549. DOI:10.1016/j.lfs.2021.119549.

[78]

BHATEJA P K, KAJAL A, SINGH R. Amelioration of diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using Acacia tortilis polysaccharide in Streptozotocin-Nicotinamide induced diabetes in rats[J]. Journal of Ayurveda and Integrative Medicine, 2020, 11(4): 405-413. DOI:10.1016/j.jaim.2019.06.003.

[79]

WONGKRASANT P, PONGKORPSAKOL P, CHITWATTANANONT S, et al. Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of iNOS and cleaved caspase-3 expression[J]. Journal of Pharmacological Sciences, 2020, 143(2): 65-73. DOI:10.1016/j.jphs.2020.03.001.

[80]

YANG Z M, WANG Y, CHEN S Y. Astragalus polysaccharide alleviates type 2 diabetic rats by reversing the glucose transporters and sweet taste receptors/GLP-1/GLP-1 receptor signaling pathways in the intestine-pancreatic axis[J]. Journal of Functional Foods, 2021, 76: 104310. DOI:10.1016/j.jff.2020.104310.

[81]

FANG J Y, LIN Y, XIE H L, et al. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice[J]. Food Chemistry: X, 2022, 13: 100207. DOI:10.1016/j.fochx.2022.100207.

[82]

SIMON M C, STRASSBURGER K, NOWOTNY B, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept[J]. Diabetes Care, 2015, 38(10): 1827-1834. DOI:10.2337/dc14-2690.

[83]

ZHANG Z, LIANG X, LV Y Y, et al. Evaluation of probiotics for improving and regulation metabolism relevant to type 2 diabetes in vitro[J]. Journal of Functional Foods, 2020, 64: 103664. DOI:10.1016/j.jff.2019.103664.

[84]

BAGAROLLI R A, NATÁLIA TOBAR, OLIVEIRA A G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice[J]. Journal of Nutritional Biochemistry, 2017, 50: 16-25. DOI:10.1016/j.jnutbio.2017.08.006.

[85]

ANIMAL, BIOCHEMISTRY, DIVISION, et al. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats[J]. Beneficial Microbes, 2016, 8(2): 243-255. DOI:10.3920/bm2016.0090.

[86]

MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461: 1282-1286. DOI:10.1038/nature08530.

[87]

GU Y X, LI X, CHEN H R, et al. Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier[J]. Food Bioscience, 2022, 47: 101619. DOI:10.1016/j.fbio.2022.101619.

[89]

MIYAMOTO J, OHUE-KITANO R, MUKOUYAMA H, et al. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23813-23821. DOI:10.1073/pnas.1912573116.

[91]

TOLHURST G, HEFFRON H, YU S L, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371. DOI:10.2337/db11-1019/-/DC1.

[92]

KIM M H, KANG S G, PARK J H, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406. e10. DOI:10.1053/j.gastro.2013.04.056.

[93]

HEIKKINEN S, ARGMANN C A, CHAMPY M F, et al. Evaluation of glucose homeostasis[J]. Current Protocols in Molecular Biology, 2007, 77(1): 29B. 3.1-29B. 3.22. DOI:10.1002/0471142727.mb29b03s77.

[94]

WANG G Q, LIU J, XIA Y J, et al. Probiotics-based interventions for diabetes mellitus: a review[J]. Food Bioscience, 2021, 43: 103172. DOI:10.1016/j.fbio.2021.101172.

[95]

DE AGUIAR VALLIM T Q, TARLING E J, EDWARDS P A. Pleiotropic roles of bile acids in metabolism[J]. Cell Metabolism, 2013, 17(5): 657-669. DOI:10.1016/j.cmet.2013.03.013.

[96]

KUIPERS F, BLOKS V W, GROEN A K. Beyond intestinal soap-bile acids in metabolic control[J]. Nature Reviews Endocrinology, 2014, 10(8): 488-498. DOI:10.1038/nrendo.2014.60.

[97]

FIORUCCI S, DISTRUTTI E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders[J]. Trends in Molecular Medicine, 2015, 21(11): 702-714. DOI:10.1016/j.molmed.2015.09.001.

[98]

KUMAR D P, ASGHARPOUR A, MIRSHAHI F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis[J]. Journal of Biological Chemistry, 2016, 291(13): 6626-6640. DOI:10.1074/jbc.M115.699504.

[99]

TRABELSI M S, DAOUDI M, PRAWITT J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L-cells[J]. Nature Communications, 2015, 6: 7629. DOI:10.1038/ncomms8629.

[100]

ZHENG X J, CHEN T L, JIANG R Q, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J]. Cell Metabolism, 2021, 33(4): 791-803. e7. DOI:10.1016/j.cmet.2020.11.017.

[101]

NATIVIDAD J M, AGUS A, PLANCHAIS J, et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome[J]. Cell Metabolism, 2018, 28(5): 737-749. e4. DOI:10.1016/j.cmet.2018.07.001.

[102]

LEYLABADLO H E, SANAIE S, HERAVI F S, et al. From role of gut microbiota to microbial-based therapies in type 2-diabetes[J]. Infection Genetics and Evolution, 2020, 81: 104268. DOI:10.1016/j.meegid.2020.104268.

[103]

ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Publishing Group, 2018, 9(1): 3294. DOI:10.1038/s41467-018-05470-4.

[104]

TABORSKY G J Jr. The physiology of glucagon[J]. Journal of Diabetes Science and Technology, 2010, 4(6): 1338-1344. DOI:10.1177/193229681000400607.

[105]

CHIMEREL C, EMERY E, DAVID K, et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells[J]. Cell Reports, 2014, 9(4): 1202-1208. DOI:10.1016/j.celrep.2014.10.032.

[106]

DE MELLO V D, PAANANEN J, LINDSTRÖM J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study[J]. Scientific Reports, 2017, 7(1): 46337. DOI:10.1038/srep46337.

[107]

CHEPURNY O G, LEECH C A, TOMANIK M, et al. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy[J]. Scientific Reports, 2016, 6: 28934. DOI:10.1038/srep28934.

[108]

RANG Y F, LIU H, CHENG X B, et al. Structural characterization of pectic polysaccharides from Amaranth caudatus leaves and the promotion effect on hippocampal glucagon-like peptide-1 level[J]. International Journal of Biological Macromolecules, 2023, 242(4): 124967. DOI:10.1016/j.ijbiomac.2023.124967.

[109]

YAO Y, YAN L J, CHEN H, et al. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids[J]. Phytomedicine, 2020, 77: 153268. DOI:10.1016/j.phymed.2020.153268.

[110]

MIO K, OGAWA R, TADENUMA N, et al. Arabinoxylan as well as β-glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production[J]. Biochemistry and Biophysics Reports, 2022, 32: 101343. DOI:10.1016/j.bbrep.2022.101343.

[111]

ZHAO H J, LI M, LIU L, et al. Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway[J]. International Journal of Biological Macromolecules, 2023, 230: 123241. DOI:10.1016/j.ijbiomac.2023.123241.

[112]

ZHAO F Q, LIU Q B, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats[J]. Food and Chemical Toxicology, 2019, 135: 110886. DOI:10.1016/j.fct.2019.110886.

[113]

CHEN Y C, HUANG S D, TU J H, et al. Exopolysaccharides of Bacillus amyloliquefaciens modulate glycemic level in mice and promote glucose uptake of cells through the activation of Akt[J]. International Journal of Biological Macromolecules, 2020, 146: 202-211. DOI:10.1016/j.ijbiomac.2019.12.217.

[114]

JANG H J, KOKRASHVILI Z, THEODORAKIS M J, et al. Gutexpressed gustducin and taste receptors regulate secretion of glucagonlike peptide-1[J]. Proceedings of the National Academy of Sciences, 2007, 104(38): 15069-15074. DOI:10.1073/pnas.0706890104.

[115]

KOKRASHVILI Z, MOSINGER B, MARGOLSKEE R F. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones[J]. The American Journal of Clinical Nutrition, 2009, 90(3): 822S-825S. DOI:10.3945/ajcn.2009.27462T.

[116]

SUNG W W, TU J H, YU J S, et al. Bacillus amyloliquefaciens exopolysaccharide preparation induces glucagon-like peptide 1 secretion through the activation of bitter taste receptors[J]. International Journal of Biological Macromolecules, 2021, 185: 562-571. DOI:10.1016/j.ijbiomac.2021.06.187.

[117]

PHAM H, HUI H, MORVARIDI S, et al. A bitter pill for type 2 diabetes? the activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells[J]. Biochemical and Biophysical Research Communications, 2016, 475(3): 295-300. DOI:10.1016/j.bbrc.2016.04.149.

[118]

LI X F, XU Q, JIANG T, et al. A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice[J]. Food & Function, 2016, 7(12): 4851-4860. DOI:10.1039/C6FO01147K.

[119]

LULE V, SINGH R, BEHARE P, et al. Comparison of exopolysaccharide production by indigenous Leuconostoc mesenteroides strains in whey medium[J]. Asian Journal of Dairy and Food Reasearch, 2015, 34(1): 8-12. DOI:10.5958/0976-0563.2015.00002.0.

[120]

PANTHAVEE W, NODA M, DANSHIITSOODOL N, et al. Characterization of exopolysaccharides produced by thermophilic lactic acid bacteria isolated from tropical fruits of Thailand[J]. Biological & Pharmaceutical Bulletin, 2017, 40(5): 621-629. DOI:10.1248/bpb.b16-00856.

[121]

PAN L, XU M, WANG Q, et al. Long-term drench of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 protect against type 1 diabetes of NOD mice via stimulating GLP-1 secretion[J]. Journal of the Science of Food and Agriculture, 2022, 102(5): 2023-2031. DOI:10.1002/jsfa.11541.

[122]

ZHANG Y L, HU P, WANG J L, et al. Isolation of exopolysaccharides-producing lactic acid bacteria and its antioxidant properties[J]. China Brewing, 2015, 34(10): 37-42. DOI:10.18805/ajdfr.v34i4.6878.

Food Science
Pages 292-303
Cite this article:
CHENG Z, ZHANG Y, YANG H, et al. Probiotics and Their Metabolites Alleviate Type 2 Diabetes Mellitus by Regulating Glucagon-Like Peptide-1: A Review of Recent Research. Food Science, 2024, 45(12): 292-303. https://doi.org/10.7506/spkx1002-6630-20230630-241
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return