This study aimed to comprehensively analyze metabolites in Lycium fruits and identify differential metabolites among different Lycium species for the purpose of providing a reference for in-depth exploitation and utilization of Lycium fruits of different species.
Metabolites in the dried fruits of Lycium ruthenicum Murr and Lycium barbarum L. var. auranticarpum K. F. Ching were identified and compared by widely targeted metabolomic analysis based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
A total of 1098 metabolites were detected belonging to 12 classes including amino acids and their derivatives, phenolic acids, flavonoids, alkaloids and lipids, among which phenolic acids, flavonoids and alkaloids accounted for the highest proportions. Through principal component analysis (PCA) and cluster analysis, it was found that 235 differential metabolites were up-regulated and 252 differential metabolites were down-regulated in L. ruthenicum Murr compared with L. barbarum L. var. auranticarpum K. F. Ching. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differential metabolites between the two Lycium species were mainly involved in the biosynthesis of flavonoids, tropane, piperidine and pyridine alkaloids, secondary metabolites, and ABC transport.
Lycium fruits of different species have significant differences in the contents of metabolites. This study provides some theoretical guidance for the development and utilization of Lycium ruthenicum Murr and Lycium barbarum L. var. auranticarpum K. F. Ching.
YAO R, HEINRICH M, WECKERLE C S. The genus Lycium as food and medicine: a botanical, ethnobotanical and historical review[J]. Journal of Ethnopharmacology, 2018, 212: 50-66. DOI:10.1016/j.jep.2017.10.010.
TEIXEIRA F, SILVA A M, DELERUE-MATOS C, et al. Lycium barbarum berries(Solanaceae)as source of bioactive compounds for healthy purposes: a review[J]. International Journal of Molecular Sciences, 2023, 24(5): 4777. DOI:10.3390/ijms24054777.
YAN A, DING H, LIU J J, et al. Black Lycium barbarum polysaccharide attenuates LPS-induced intestine damage via regulation gut microbiota[J]. Frontiers in Microbiology, 2023, 13: 1080922. DOI:10.3389/fmicb.2022.1080922.
LIU Y C, CHANG C C, MATSUI H, et al. C-phycocyanin and Lycium barbarum polysaccharides protect against aspirin-induced inflammation and apoptosis in gastric RGM-1 cells[J]. Nutrients, 2022, 14(23): 5113. DOI:10.3390/nu14235113.
SONG J B, LIU L, LI Z Q, et al. Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson’s disease[J]. BMC Medicine, 2022, 20(1): 412. DOI:10.1186/s12916-022-02621-9.
WEN C L, LIU C H, LI Y T, et al. Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. insight into oxido-inflammatory and apoptosis modulation[J]. Biomedicine & Pharmacotherapy, 2022, 154: 113583. DOI:10.1016/j.biopha.2022.113583.
ZHANG L Y, YU Y B, YU R Z. Analysis of metabolites and metabolic pathways in three maize (Zea mays L.) varieties from the same origin using GC-MS[J]. Scientific Reports, 2020, 10(1): 17990. DOI:10.1038/s41598-020-73041-z.
ZHANG L Y, YU Y B, WANG C Y, et al. Isolation and identification of metabolites in Chinese northeast potato (Solanum tuberosum L.) tubers using gas chromatography-mass spectrometry[J]. Food Analytical Methods, 2019, 12: 51-58. DOI:10.1007/s12161-018-1336-5.
YANG Q, ZHANG A H, MIAO J H, et al. Metabolomics biotechnology, applications, and future trends: a systematic review[J]. RSC Advances, 2019, 9(64): 37245-37257. DOI:10.1039/c9ra06697g.
YANG M, YIN M Z, CHU S S, et al. Colour, chemical compounds, and antioxidant capacity of Astragali Radix based on untargeted metabolomics and targeted quantification[J]. Phytochemical Analysis, 2022, 33(4): 599-611. DOI:10.1002/pca.3113.
XIAO Q, MU X L, LIU J S, et al. Plant metabolomics: a new strategy and tool for quality evaluation of Chinese medicinal materials[J]. Chinese Medicine, 2022, 17(1): 45. DOI:10.1186/s13020-022-00601-y.
BINGOL K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods[J]. High-Through Put, 2018, 7(2): 9. DOI:10.3390/ht7020009.
WANG S, ZUO Z, YE B, et al. Microbiome-metabolomic analysis reveals beneficial effects of dietary kelp resistant starch on intestinal functions of hybrid snakeheads (Channa maculata ♀× Channa argus ♂)[J]. Antioxidants, 2023, 12(8): 1631. DOI:10.3390/antiox12081631.
WANG X, YAN G, LIU W, et al. Endophytic Beauveria bassiana of tomato resisted the damage from whitefly Bemisia tabaci by mediating the accumulation of plant-specialized metabolites[J]. Journal of Agricultural and Food Chemistry, 2023. DOI:10.1021/acs.jafc.3c03679.
LI L, ZHANG W, LIU S, et al. Associations of multiple air pollutants with kidney function in normal-weight and obese adults and effect modification by free fatty acids[J]. Chemosphere, 2023, 28: 140009. DOI:10.1016/j.chemosphere.2023.140009.
LI T T, FAN Y F, QIN H, et al. Transcriptome and flavonoids metabolomic analysis identifies regulatory networks and hub genes in black and white fruits of Lycium ruthenicum Murray[J]. Frontiers in Plant Science, 2020, 11: 1256. DOI:10.3389/fpls.2020.01256.
HAH Y S, LEE W K, LEE S J, et al. Rutin prevents dexamethasone-induced muscle loss in C2C12 myotube and mouse model by controlling FOXO3-dependent signaling[J]. Antioxidants, 2023, 12(3): 639. DOI:10.3390/antiox12030639.
DONG R X, ZHANG X, LIU Y D, et al. Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via PI3K/AKT/mTOR pathway in diabetic kidney disease[J]. Phytomedicine, 2023, 112: 154700. DOI:10.1016/j.phymed.2023.154700.
KOSS-MIKOŁAJCZYK I, BARTOSZEK A. Relationship between chemical structure and biological activity evaluated in vitro for six anthocyanidins most commonly occurring in edible plants[J]. Molecules, 2023, 28(16): 6156. DOI:10.3390/molecules28166156.
ZHANG T J, CHOW W S, LIU X T, et al. A magic red coat on the surface of young leaves: anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition[J]. Tree Physiology, 2016, 36(10): 1296-1306. DOI:10.1093/treephys/tpw080.
LI Y, CHEN Q Y, XIE X D, et al. Integrated metabolomics and transcriptomics analyses reveal the molecular mechanisms underlying the accumulation of anthocyanins and other flavonoids in cowpea pod (Vigna unguiculata L.)[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9260-9275. DOI:10.1021/acs.jafc.0c01851.
BOSSE M A, SILVA M B D, OLIVEIRA N G R M, et al. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants[J]. Plant Physiology and Biochemistry, 2021, 166: 512-521. DOI:10.1016/j.plaphy.2021.06.007.
WANG L W, WAN G M, WANG G, et al. Anthocyanin from Lycium ruthenicum Murr. in the qaidam basin alleviates ultraviolet-induced apoptosis of human skin fibroblasts by regulating the death receptor pathway[J]. Clinical, Cosmetic Investigational Dermatology, 2022, 15: 2925-2932. DOI:12.2147/CCID.S388418.
LU K K, WANG J, YU Y Y, et al. Lycium ruthenicum Murr. alleviates nonalcoholic fatty liver in mice[J]. Food Science & Nutrition, 2020, 8(6): 2588-2597. DOI:10.1002/fsn3.1445.
CHEN S S, WANG H L, HU N. Long-term dietary Lycium ruthenicum Murr. anthocyanins intake alleviated oxidative stress-mediated aging-related liver injury and abnormal amino acid metabolism[J]. Foods, 2022, 11(21): 3377. DOI:10.3390/foods11213377.