PDF (5.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Screening, Identification and Genome Annotation of Esterase-Producing Lactococcus garvieae

Cong CHEN1 Wei ZOU1,2 ()Xiujuan TANG1,3Xiaosong CHEN1Chengze WU1
College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
Liquor Brewing Biotechnology and Application Key Laboratoray of Sichuan Province, Yibin 644005, China
Leshan Vocational and Technical College, Leshan 614000, China
Show Author Information

Abstract

In this study, a strain, named S5-4, with high esterase activity was obtained from Nongxiangxing Daqu by primary and secondary screening, and subjected to whole genome sequencing, esterase annotation and metabolic pathway analysis. The strain exhibited a maximal ratio of transparent zone diameter to colony diameter (D/d) of 2.27 ± 0.02, and it was identified as Lactococcus garvieae. Its morphological, physiological, and biochemical characteristics were determined, and its esterase activity was measured to be 15.74 U/mL. This strain produced (0.3450 ± 0.1600) g/L of ethyl acetate and (0.2983 ± 0.2300) g/L of ethyl lactate after anaerobic fermentation at 35 ℃ for 15 days. The genome size of S5-4 was determined to be 2191113 bp in length, with a GC content of 37.99%. A total of 1486 genes, including 4 rRNA genes, 69 tRNA genes, and 34 ncRNA genes were predicted. In total, 11 esterase genes were annotated in the genome of S5-4 including phosphatases (five intracellular ones and two membrane ones), acyl-CoA dehydrogenase (intracellular), triacylglycerol lipase (extracellular), carboxylase (extracellular), and hemicellulose esterase (intracellular). Based on functional genomic annotation, the metabolic pathways to produce ethyl acetate and ethyl lactate from starch and galactose as carbon sources were constructed and found to be consistent with the experimental results. Given its ability to produce esterase, the strain could be used as a biocatalyst for esterification in Baijiu fermentation or as a flavor enhancer in Daqu production.

CLC number: TS261.1 Document code: A Article ID: 1002-6630(2024)08-0087-09

References

[1]

BORNSCHEUER U T. Microbial carboxyl esterases: classification, properties and application in biocatalysis[J]. FEMS Microbiology Reviews, 2002, 26(1): 73-81. DOI:10.1111/J.1574-6976.2002.TB00599.X.

[3]

UYAMA H, KOBAYASGI S. Enzyme-catalyzed polymerization to functional polymers[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 19: 117-127. DOI:10.1016/S1381-1177(02)00158-3.

[4]

LAUDANI C G, HABULIN M, KNEZ Ž, et al. Immobilized lipasemediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study[J]. Journal of Supercritical Fluids, 2007, 41(1): 74-81. DOI:10.1016/J.SUPFLU.2006.08.017.

[5]

WU H L, LI H L, XUE Y Q, et al. High efficiency co-production of ferulic acid and xylooligosaccharides from wheat bran by recombinant xylanase and feruloyl esterase[J]. Biochemical Engineering Journal, 2017, 120: 41-48. DOI:10.1016/J.BEJ.2017.01.001.

[6]

BATTY D, MEUNIER-GODDIK L, WAITE-CUSIC J G. Camemberttype cheese quality and safety implications in relation to the timing of high-pressure processing during aging[J]. Journal of Dairy Science, 2019, 102(1): 144-154. DOI:10.3168/jds.2018-16236.

[7]

KIM J, DENG L, HONG E, et al. Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197[J]. Protein Expression and Purification, 2015, 116: 90-97. DOI:10.1016/j.pep.2015.08.009.

[8]

AMIRI S, ABOTALEBI K, SEYYED R, et al. The effect of unit operation and adjunct probiotic culture on physicochemical, biochemical, and textural properties of Dutch Edam cheese[J]. LWTFood Science and Technology, 2022, 155(1): 112859. DOI:10.1016/j.lwt.2021.112859.

[9]

JEGANNATHAN K R, NIELSEN P H. Environmental assessment of enzyme use in industrial production: a literature review[J]. Journal of Cleaner Production, 2013, 42: 228-240. DOI:10.1016/J.JCLEPRO.2012.11.005.

[10]

ADRIO J L, DEMAIN A L. Microbial enzymes: tools for biotechnological processes[J]. Biomolecules, 2014, 4: 117-139. DOI:10.3390/biom4010117.

[13]

BOTTCHER D, BORNSCHEUER U T. Protein engineering of microbial enzymes[J]. Current Opinion in Microbiology, 2010, 13(3): 274-282. DOI:10.1016/j.mib.2010.01.010.

[16]

ROMANO D, BNONMI F, DEMATTOS M C, et al. Esterases as stereoselective biocatalysts[J]. Biotechnology Advances, 2015, 33(5): 547-565. DOI:10.1016/j.biotechadv.2015.01.006.

[17]

BIELY P. Microbial carbohydrate esterases deacetylating plant polysaccharides[J]. Biotechnology Advances, 2012, 30(6): 1575-1588. DOI:10.1016/j.biotechadv.2012.04.010.

[25]

TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38: 3022-3027. DOI:10.1093/molbev/msab120.

[26]

SCHUBERT M, LINDGREEN S, ORLANDO L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging[J]. BMC Research Notes, 2016, 9(1): 88. DOI:10.1186/s13104-016-1900-2.

[27]

LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1: 18. DOI:10.1186/2047-217X-1-18.

[28]

COIL D A, JOSPIN G, DARLING A E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data[J]. Bioinformatics, 2014, 31(4): 587-589. DOI:10.1093/bioinformatics/btu661.

[29]

BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477. DOI:10.1089/cmb.2012.0021.

[30]

WALKER B J, ABEEL T, SHEA T P, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement[J]. PLoS ONE, 2014, 9: e112963. DOI:10.1371/journal.pone.0112963.

[31]

GRANT J R, STOTHARD P. The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Research, 2008, 36: 181-184. DOI:10.1093/nar/gkn179.

[32]

CHOU K C, SHEN H B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms[J]. Nature Protocols, 2008, 3: 153-162. DOI:10.1038/nprot.2007.494.

[33]

KANEHISA M, GOTO S. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30. DOI:10.1093/nar/27.1.29.

[34]

SIEVERS F, HIGGINS D G. Clustal omega[J]. Current Protocols in Bioinformatics, 2014, 48: 1-33. DOI:10.1002/0471250953.bi0313s48.

[35]

GOUET P, COURCELLE E, STUART D I, et al. ESPript: analysis of multiple sequence alignments in PostScript[J]. Bioinformatics, 1999, 15(4): 305-308. DOI:10.1093/bioinformatics/15.4.305.

[36]

BU D C, LUO H T, HUO P P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Research, 2021, 49: 317-325. DOI:10.1093/nar/gkab447.

[37]

SAIER M H, REDDY V S, TSU B V, et al. The transporter classification database (TCDB): recent advances[J]. Nucleic Acids Research, 2015, 44: 372-379. DOI:10.1093/nar/gkt1097.

Food Science
Pages 87-95
Cite this article:
CHEN C, ZOU W, TANG X, et al. Screening, Identification and Genome Annotation of Esterase-Producing Lactococcus garvieae. Food Science, 2024, 45(8): 87-95. https://doi.org/10.7506/spkx1002-6630-20230714-161
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return