PDF (2.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Isolation and Screening of Lactic Acid Bacteria from the Gut of Forest Musk Deer for Probiotic Properties

Jing ZI1,2 Yan WANG1,2Liangliang LI3Kun ZHANG1,2Yi WAN1,2 ()
Shaanxi Institute of Microbiology, Xi’an 710043, China
Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an 710043, China
College of Science, Xi’an University of Technology, Xi’an 710054, China
Show Author Information

Abstract

This study aimed to isolate and select potential probiotic strains from the feces of healthy forest musk deer and to evaluate their in vitro probiotic characteristics. Twelve isolates were obtained and identified by cell morphology and bacterial 16S rDNA sequencing. Their survival under low pH and bile salt conditions, antagonistic activities against five pathogens (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa PAO1, Salmonella enteritidis ATCC 13076 and Arcanobacterium pyogenes LSN3), auto-aggregation characteristics, hydrophobicity, antibiotic susceptibility and antibiotic resistance genotypes, and growth curves were evaluated. The results showed that five Lactiplantibacillus plantarum isolates and one Pediococcus acidilactici isolate survived at pH 4, or in 0.5% bile salt with survival rates of more than 88.5% and 87%, respectively. All of them inhibited the five pathogens with diameters of inhibition zones of 17.20-20.19 mm for E. coli ATCC 25922, S. aureus ATCC 25923, P. aeruginosa PAO1 and S. enteritidis ATCC 13076 and of 14.23-15.53 mm for A. pyogenes LSN3. They had similar auto-aggregation capacity (53.1%-56.2%) and surface hydrophobicity (52.9%-56.0%) to L. paracasei L22. They were resistant to streptomycin, ciprofloxacin and vancomycin, carried the vanX gene and rapidly grew; the optical density at 600 nm (OD600) reached 9.0 and 7.1 for L. plantarum and P. acidilactici from the gut of forest musk deer after 24 h incubation, respectively. Our findings demonstrated that these six isolates can be used as sources for the development of probiotic preparations intended for forest musk deer.

CLC number: TS201.3 Document code: A Article ID: 1002-6630(2024)08-0079-08

References

[1]

MENG X X, FENG J C, YUN M Y, et al. Relationships between musk extraction, social rank and tail-rubbing in male Alpine musk deer, Moschus sifanicus[J]. Biologia, 2011, 66(5): 928-932. DOI:10.2478/s11756-011-0093-3.

[2]

YANG Q S, MENG X X, XIA L, et al. Conservation status and causes of decline of musk deer (Moschus spp.) in China[J]. Biological Conservation, 2003, 109(3): 333-342. DOI:10.1016/S0006-3207(02)00159-3.

[6]

ZAMOJSKA D, NOWAK A, NOWAK I, et al. Probiotics and postbiotics as substitutes of antibiotics in farm animals: a review[J]. Animals, 2021, 11(12): 3431-3450. DOI:10.3390/ani11123431.

[8]

MATHUR H, BERESFORD T P, COTTER P D. Health benefits of lactic acid bacteria (LAB) fermentates[J]. Nutrients, 2020, 12(6): 1679-1696. DOI:10.3390/nu12061679.

[9]

XIONG L C, NI X Q, NIU L L, et al. Isolation and preliminary screening of a Weissella confusa strain from giant panda (Ailuropoda melanoleuca)[J]. Probiotics and Antimicrobial Proteins, 2019, 11(2): 535-544. DOI:10.1007/s12602-018-9402-2.

[10]

WEI X J, ZHANG Y, ZHOU H, et al. Antimicrobial activities and in vitro properties of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes of high latitude water areas in Xinjiang, China[J]. BMC Microbiology, 2019, 19(1): 247-260. DOI:10.1186/s12866-019-1623-3.

[12]

LUO Y, MA B C, ZOU L K, et al. Identification and characterization of lactic acid bacteria from forest musk deer feces[J]. African Journal of Microbiology Research, 2012, 6(29): 5871-5881. DOI:10.5897/AJMR12.807.

[13]

MANZOOR A, TAYYEB A. Functional probiotic attributes and gene encoding plantaracin among variant Lactobacillus plantarum strains[J]. Microbial Pathogenesis, 2019, 131(1): 22-32. DOI:10.1016/j.micpath.2019.03.016.

[14]

PRABHURAJESHWAR C, CHANDRAKANTH R K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances[J]. Biomedical Journal, 2017, 40(5): 270-283. DOI:10.1016/j.bj.2017.06.008.

[15]

POLAK-BERECKA M, WASKO A, PADUCH R, et al. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus[J]. Antonie van Leeuwenhoek, 2014, 106(4): 751-762. DOI:10.1007/s10482-014-0245-x.

[16]

CROW V L, GOPAL P K. Cell surface differences of lactococcal strains[J]. International Dairy Journal, 1995, 5(1): 45-68. DOI:10.1016/0958-6946(94)P1598-8.

[17]

REUBEN R C, ROY P C, SARKAR S L, et al. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics[J]. BMC Microbiology, 2019, 19(1): 253-272. DOI:10.1186/s12866-019-1626-0.

[18]
WAYNE P. Performance standards for antimicrobial susceptibility testingagents[EB/OL]. (2023-07-10)[2023-02-01]. https://clsi.org/media/3481/m100ed30_sample.
[19]

OUOBA L I I, LEI V, JENSEN L B. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria[J]. International Journal of Food Microbiology, 2008, 121(2): 217-224. DOI:10.1016/j.ijfoodmicro.2007.11.018.

[20]

HUMMEL A S, HERTEL C, HOLZAPFEL W H, et al. Antibiotic resistances of starter and probiotic strains of lactic acid acteria[J]. Applied and Environmental Microbiology, 2007, 73(3): 730-739. DOI:10.1128/aem.02105-06.

[21]

KASTNER S, PERRETEN V, BLEULER H, et al. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food[J]. Systematic and Applied Microbiology, 2006, 29(1): 145-155. DOI:10.1016/j.syapm.2005.07.009.

[22]

SABOUNI F, MOVAHEDI Z, MAHMOUDI S, et al. High frequency of vancomyc in resistant Enterococcus faecalis in children: an alarming concern[J]. Journal of Preventive Medicine and Hygiene, 2016, 57(4): 201-204. DOI:10.15167/2421-4248/JPMH2016.57.4.610.

[23]

LIU C, ZHANG Z Y, DONG K, et al. Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs[J]. Biomedical and Environmental Sciences, 2009, 22(5): 401-412. DOI:10.1016/S0895-3988(10)60018-9.

[24]

ZHOU N, ZHANG J X, FAN M T, et al. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts[J]. Journal of Dairy Science, 2012, 95(9): 4775-4783. DOI:10.3168/jds.2011-5271.

[25]

MAKETE G, AIYEGORO O A, THANTSHA M S. Isolation, identification and screening of potential probiotic bacteria in milk from south african saanen goats[J]. Probiotics and Antimicrobial Proteins, 2016, 9(3): 246-254. DOI:10.1007/s12602-016-9247-5.

[26]

FUOCHI V, PETRONIO G P, LISSANDRELLO E, et al. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates[J]. International Journal of Immunopathology and Pharmacology, 2015, 28(3): 426-433. DOI:10.1177/0394632015590948.

[27]

GILLILAND S E, STALEY T E, BUSH L G. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct[J]. Journal of Dairy Science, 1984, 67(12): 3045-3051. DOI:10.3168/jds.S0022-0302(84)81670-7.

[28]

MOHAMMADI F, ESHAGHI M, RAZAVI S, et al. Characterization of bacteriocin production in Lactobacillus spp. isolated from mother’s milk[J]. Microbial Pathogenesis, 2018, 118(1): 242-246. DOI:10.1016/j.micpath.2018.03.020.

[29]

ZHANG W Q, LAI S J, ZHOU Z Y, et al. Screening and evaluation of lactic acid bacteria with probiotic potential from local Holstein raw milk[J]. Frontiers in Microbiology, 2022, 13(1): 918774. DOI:10.3389/fmicb.2022.918774.

[30]

PEREIRA G V M, COELHO B O, JÚNIOR A I M, et al. How to select a probiotic? a review and update of methods and criteria[J]. Biotechnology Advances, 2018, 36(8): 2060-2076. DOI:10.1016/j.biotechadv.2018.09.003.

[31]

DUARY R K, RAJPUT Y S, BATISH V K, et al. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells[J]. Indian Journal of Medical Research, 2011, 134(5): 664-671. DOI:10.4103/0971-5916.90992.

[32]

LIU C, XUE W J, DING H, et al. Probiotic potential of Lactobacillus strains isolated from fermented vegetables in Shaanxi, China[J]. Frontiers in Microbiology, 2022, 12(1): 774903. DOI:10.3389/fmicb.2021.774903.

[33]

LU Y Y, ZHANG Z, LIANG X, et al. Study of gastrointestinal tract viability and motility via modulation of serotonin in a zebrafish model by probiotics[J]. Food & Function, 2019, 10(11): 7416-7425. DOI:10.1039/c9fo02129a.

[34]

LIASI S A, AZMI T I, HASSAN M D, et al. Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu[J]. Malaysian Journal of Microbiology, 2009, 5(1): 33-37. DOI:10.21161/mjm.15008.

[35]

ANISIMOVA E, GOROKHOVA I, KARIMULLINA G, et al. Alarming antibiotic resistance of lactobacilli isolated from probiotic preparations and dietary supplements[J]. Antibiotics, 2022, 11(11): 1557-1568. DOI:10.3390/antibiotics11111557.

[36]

CAMPEDELLI I, MATHUR H, SALVETTI E, et al. Genuswide assessment of antibiotic resistance in Lactobacillus spp.[J]. Applied and Environmental Microbiology, 2018, 85(1): 1738-1758. DOI:10.1128/AEM.01738-18.

[37]

CLEMENTI F, AQUILANTI L. Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria[J]. Anaerobe, 2011, 17(6): 394-398. DOI:10.1016/j.anaerobe.2011.03.021.

Food Science
Pages 79-86
Cite this article:
ZI J, WANG Y, LI L, et al. Isolation and Screening of Lactic Acid Bacteria from the Gut of Forest Musk Deer for Probiotic Properties. Food Science, 2024, 45(8): 79-86. https://doi.org/10.7506/spkx1002-6630-20230714-171
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return