PDF (7.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Basic Research | Publishing Language: Chinese | Open Access

Impact of Carboxymethyl Chitosan on the Microstructure, Thermal Stability and Self-assembly Behavior of Bovine Bone Collagen

Hong LIU1 Yujie GUO1 ()Xiong XU1Xia LI1Hongru ZHANG1Chunhui ZHANG1 ()Yang XU2
Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Inner Mongolia Mengtai Biological Engineering Co. Ltd., Hohhot 011517, China
Show Author Information

Abstract

Constructing an edible extracellular matrix (ECM) scaffold with good thermal stability, self-assembly properties and biocompatibility is crucial for manufacturing structured cell cultured meat products. In this study, carboxymethyl chitosan (CMCS) was introduced into the bovine bone collagen (BBC) system. Using ultraviolet (UV) absorption, infrared(IR) and fluorescence spectroscopy, it was found that the interaction between BBC and CMCS was enhanced with the increase in CMCS concentration, without affecting the triple-helical structure. The results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the introduction of CMCS reinforced the thermal stability of BBC. Turbidity test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed an increase in the degree of fibrillogenesis and aggregation behavior and changes in self-assembly rate; a looser and twisted three-dimensional structure with a larger fibril diameter and a wider diameter distribution was observed after the introduction of CMCS. However, the introduction of CMCS did not significantly affect the formation and length of D-periodicity (a characteristic alternating light/dark transverse stripe structure formed during the self-assembly process of collagen fibers) in BBC, and there was no significant difference in the cell compatibility of the system before and after the introduction of CMCS. The BBC-CMCS interaction might be dominated more by electrostatic forces than covalent interactions and hydrogen bonds with the increase in CMCS concentration. These results indicated that the introduction of CMCS improved the thermal stability and self-assembly properties of BBC without affecting its biocompatibility or triple-helical integrity. This study provides a reference for the development of excellent edible collagen-based ECM as a biomimetic scaffold for cultured meat and for the deep processing and high-value utilization of livestock and poultry bone by-products.

CLC number: TS251.1 Document code: A Article ID: 1002-6630(2024)14-0001-13

References

[1]
Food and Agriculture Organization of the United Nations. Global meat market size, share, industry report 2022[R]. Rome: Food and Agriculture Organization of the United Nations, 2022.
[2]

CHEN Y, LI L Z, CHEN L, et al. Gellan gum-gelatin scaffolds with Ca2+ crosslinking for constructing a structured cell cultured meat model[J]. Biomaterials, 2023, 299: 122176. DOI:10.1016/j.biomaterials.2023.122176.

[5]

BENJAMINSON M A, GILCHRIEST J A, LORENZ M. In vitro edible muscle protein production system (MPPS): stage 1, fish[J]. Acta Astronautica, 2002, 51(12): 879-889. DOI:10.1016/S0094-5765(02)00033-4.

[6]

MARK J P. Cultured beef: medical technology to produce food[J]. Journal of the Science of Food and Agriculture, 2014, 94(6): 1039-1041. DOI:10.1002/jsfa.6474.

[8]

STAMOV D, GRIMMER M, SALCHERT K, et al. Heparin intercalation into reconstituted collagen Ⅰ fibrils: impact on growth kinetics and morphology[J]. Biomaterials, 2008. 29(1): 1-14. DOI:10.1016/j.biomaterials.2007.09.009.

[9]

RAN Y Q, SU W, MA L, et al. Insight into the effect of sulfonated chitosan on the structure, rheology and fibrillogenesis of collagen[J]. International Journal of Biological Macromolecules, 2021, 166: 1480-1490. DOI:10.1016/j.ijbiomac.2020.11.027.

[10]

MACQUEEN L A, ALVER C G, CHANTRE C O, et al. Muscle tissue engineering in fibrous gelatin: implications for meat analogs[J]. NPJ Science of Food, 2019, 3(1): 20. DOI:10.1038/s41538-019-0054-8.

[11]

PARK S, JUNG S W, HEO J, et al. Chitosan/cellulose-based porous nanofilm delivering C-phycocyanin: a novel platform for the production of cost-effective cultured meat[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32193-32204. DOI:10.1021/acsami.1c07385.

[13]

LIU H, GUO Y J, XU X, et al. Comparative assessment of bone collagen recovered from different livestock and poultry species: microstructure, physicochemical characteristics and functional properties[J]. International Journal of Food Science & Technology, 2023, 58(3): 1597-1610. DOI:10.1111/ijfs.15896.

[14]

JITHENDRA P, RAJAM A M, KALAIVANI T, et al. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7291-7298. DOI:10.1021/am401637c.

[15]

FRAYSSINET A, PETTA D, ILLOUL C, et al. Extracellular matrixmimetic composite hydrogels of cross-linked hyaluronan and fibrillar collagen with tunable properties and ultrastructure[J]. Carbohydrate Polymers, 2020, 236: 116042. DOI:10.1016/j.carbpol.2020.116042.

[16]

CHANDIKA P, KO S C, OH G W, et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application[J]. International Journal of Biological Macromolecules, 2015, 81: 504-513. DOI:10.1016/j.ijbiomac.2015.08.038.

[17]

WANG Q Q, LIU Y, ZHANG C J, et al. Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+ and oxidized starch: Preparation and properties[J]. Materials Science and Engineering: C, 2019, 99: 1469-1476. DOI:10.1016/j.msec.2019.02.091.

[18]

TYLINGO R, GORCZYCA G, MANIA S, et al. Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite[J]. Reactive and Functional Polymers, 2016, 103: 131-140. DOI:10.1016/j.reactfunctpolym.2016.04.008.

[19]

THANKACHAN S N, ILAMARAN M, AYYADURAI N, et al. Insights into the effect of artificial sweeteners on the structure, stability, and fibrillation of type Ⅰ collagen[J]. International Journal of Biological Macromolecules, 2020, 164: 748-758. DOI:10.1016/j.ijbiomac.2020.07.152.

[20]

HOLMES R, KIRK S, TRONCI G, et al. Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type Ⅰ collagen[J]. Materials Science and Engineering: C, 2017, 77: 823-827. DOI:10.1016/j.msec.2017.03.267.

[21]

WANG X L, SANG L, LUO D M, et al. From collagen-chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(1): 233-240. DOI:10.1016/j.colsurfb.2010.08.047.

[22]

SUN Z M, SHI C G, WANG X Y, et al. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan[J]. Carbohydrate Polymers, 2017, 155: 321-328. DOI:10.1016/j.carbpol.2016.08.069.

[23]

SIVASHANKARI P R, PRABAHARAN M. Prospects of chitosanbased scaffolds for growth factor release in tissue engineering[J]. International Journal of Biological Macromolecules, 2016, 93: 1382-1389. DOI:10.1016/j.ijbiomac.2016.02.043.

[25]

SEAH J S H, SINGH S, TAN L P, et al. Scaffolds for the manufacture of cultured meat[J]. Critical Reviews in Biotechnology, 2022, 42(2): 311-323. DOI:10.1080/07388551.2021.1931803.

[26]

ZERNOV A, BARUCH L, MACHLUF M, et al. Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat[J]. Food Hydrocolloids, 2022, 129: 107632. DOI:10.1016/j.foodhyd.2022.107632.

[27]

LI L Z, CHEN L, CHEN X H, et al. Chitosan-sodium alginatecollagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat[J]. International Journal of Biological Macromolecules, 2022, 209: 668-679. DOI:10.1016/j.ijbiomac.2022.04.052.

[29]

LIU H, ZHANG H R, WANG K Y, et al. Impact of ultrasonication on the self-assembly behavior and gel properties of bovine bone collagen Ⅰ [J]. Molecules, 2023, 28(7): 3096. DOI:10.3390/molecules28073096.

[30]

TIAN H H, REN Z Y, SHI L F, et al. Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations[J]. Process Biochemistry, 2021, 108: 153-160. DOI:10.1016/j.procbio.2021.06.013.

[31]

WEI L, XIA G H, LI Y C, et al. Comparison of characteristics and fibril-forming ability of skin collagen from barramundi (Lates calcarifer) and tilapia (Oreochromis niloticus)[J]. International Journal of Biological Macromolecules, 2017, 107: 549-559. DOI:10.1016/j.ijbiomac.2017.09.022.

[32]

LIU D, ZHOU P, LI T C, et al. Comparison of acid-soluble collagens from the skins and scales of four carp species[J]. Food Hydrocolloids, 2014, 41: 290-297. DOI:10.1016/j.foodhyd.2014.04.030.

[33]

ZHANG J T, HUANG Y Z, LIU W, et al. Improvement of collagen self-assembly and thermal stability in the presence of trehalose[J]. New Journal of Chemistry, 2022, 46: 9264-9271. DOI:10.1039/D2NJ00677D.

[35]

JIANG Y H, LOU Y Y, LI T H, et al. Cross-linking methods of type Ⅰ collagen-based scaffolds for cartilage tissue engineering[J]. American Journal of Translational Research, 2022, 14(2): 1146-1159.

[36]

KURNIASIH M, CAHYATI T, DEWI R S, et al. Carboxymethyl chitosan as an antifungal agent on gauze[J]. International Journal of Biological Macromolecules, 2018, 119: 166-171. DOI:10.1016/j.ijbiomac.2018.07.038.

[38]

SONG Q P, ZHANG Z, GAO J G, et al. Synthesis and property studies of N-carboxymethyl chitosan[J]. Journal of Applied Polymer Science, 2010, 119(6): 3282-3285. DOI:10.1002/app.32925.

[39]

CHENG Y, ZHANG H, ZHAO Y T, et al. Sponges of carboxymethyl chitosan grafted with collagen peptides for wound healing[J]. International Journal of Molecular Sciences, 2019, 20(16): 3890. DOI:10.3390/ijms20163890.

[40]

ABUGOCH L E, TAPIA C, VILLAMAN M C, et al. Characterization of quinoa protein-chitosan blend edible-films[J]. Food Hydrocolloids, 2011, 25(5): 879-886. DOI:10.1016/j.foodhyd.2010.08.008.

[41]

YAN M Y, AN X S, JIANG Z C, et al. Effects of cross-linking with EDC/NHS and genipin on characterizations of self-assembled fibrillar gel prepared from tilapia collagen and alginate[J]. Polymer Degradation and Stability, 2022, 200: 109929. DOI:10.1016/j.polymdegradstab.2022.109929.

[43]

MONAGO-MARANA O, WOLD J P, RØDBOTTEN R, et al. Raman, near-infrared and fluorescence spectroscopy for determination of collagen content in ground meat and poultry by-products[J]. LWT-Food Science and Technology, 2021, 140: 110592. DOI:10.1016/j.lwt.2020.110592.

[46]

VEETTIL S P, GOPINATH A, MADHAN B, et al. A cyclodextrinbased macrocyclic oligosaccharide cavitand with a dual functionality limits the collagen fibrillogenesis: a possible carbohydrate-based therapeutic molecule for fibrotic diseases[J]. International Journal of Biological Macromolecules, 2022, 207: 222-231. DOI:10.1016/j.ijbiomac.2022.03.005.

[47]

JIANG Y, WANG H B, DENG M X, et al. Effect of ultrasonication on the fibril-formation and gel properties of collagen from grass carp skin[J]. Materials Science and Engineering: C, 2016, 59: 1038-1046. DOI:10.1016/j.msec.2015.11.007.

[48]

ZHANG M, YANG J H, YANG Q L, et al. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid)[J]. International Journal of Biological Macromolecules, 2018, 112: 1156-1163. DOI:10.1016/j.ijbiomac.2018.02.027.

[49]

QU Y, GUO Q, LI T, et al. Effects of different denaturants on the properties of a hot-pressed peanut meal-based adhesive[J]. Molecules, 2022, 27(15): 4878. DOI:10.3390/molecules27154878.

[50]

LI Z, ZHAO S J, WANG Z, et al. Biomimetic water-in-oil water/pMDI emulsion as an excellent ecofriendly adhesive for bonding wood-based composites[J]. Journal of Hazardous Materials, 2020, 396: 122722. DOI:10.1016/j.jhazmat.2020.122722.

[51]

ZHANG J T, YANG W D, XIE L Q, et al. Fibrillogenesis of acrylic acid-grafted-collagen without self-assembly property inspired by the hybrid fibrils of xenogeneic collagen[J]. International Journal of Biological Macromolecules, 2020, 163: 2127-2133. DOI:10.1016/j.ijbiomac.2020.09.058.

[52]

ZHU S C, YUAN Q J, TAO Y, et al. Self-assembly of collagenbased biomaterials: preparation, characterizations and biomedical applications[J]. Journal of Materials Chemistry B, 2018, 6: 2650-2676. DOI:10.1039/C7TB02999C.

[53]

SHEN L, BU H H, YANG H, et al. Investigation on the behavior of collagen self-assembly in vitro via adding sodium silicate[J]. International Journal of Biological Macromolecules, 2018, 115: 635-642. DOI:10.1016/j.ijbiomac.2018.04.074.

[54]

CHENG Y, LU S T, ZHANG H, et al. Marine collagen peptide grafted carboxymethyl chitosan: optimization preparation and coagulation evaluation[J]. International Journal of Biological Macromolecules, 2020, 164: 3953-3964. DOI:10.1016/j.ijbiomac.2020.09.006.

[55]

LIU X H, DAN N H, DAN W H. Insight into the collagen assembly in the presence of lysine and glutamic acid: an in vitro study[J]. Materials Science and Engineering: C, 2017, 70: 689-700. DOI:10.1016/j.msec.2016.09.037.

[56]

YAN M Y, AN X S, DUAN S J, et al. A comparative study on crosslinking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin[J]. International Journal of Biological Macromolecules, 2022, 213: 639-650. DOI:10.1016/j.ijbiomac.2022.06.006.

Food Science
Pages 1-13
Cite this article:
LIU H, GUO Y, XU X, et al. Impact of Carboxymethyl Chitosan on the Microstructure, Thermal Stability and Self-assembly Behavior of Bovine Bone Collagen. Food Science, 2024, 45(14): 1-13. https://doi.org/10.7506/spkx1002-6630-20230719-201
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return