In order to investigate the effect of ultrasound on the structure and physical stability of chicken myofibrillar protein (MP) under low-salt conditions (0.15 mol/L NaCl), as well as the oxidizing effect of free radicals generated by ultrasound on MP, this study investigated the changes in the structure and oxidative properties of MP under low-salt conditions after ultrasound treatments (20 kHz, 450 W for 0, 3, 6, 9, and 12 min). The results showed that compared with the control group, the solubility, physical stability, and absolute ζ-potential of MP under low-salt conditions increased significantly (P < 0.05) with ultrasonic treatment time, whereas the turbidity and particle size decreased significantly (P < 0.05). The solubility was increased to 58.5% after 12 min of ultrasonic treatment. After ultrasonic treatment, the surface hydrophobicity and molecular flexibility were significantly increased, indicating that ultrasonic treatment caused the highly aggregated structure of myofibrillar protein to unfold and the internal hydrophobic groups to be exposed under low-salt conditions. After ultrasonic treatment for more than 6 min, the free sulfhydryl content of MP began to gradually decrease, whereas the content of disulfide bonds increased. After ultrasonic treatment for 12 min, the contents of free radicals, carbonyl groups and dimerized tyrosine (by 20.55%) were significantly increased (P < 0.05), while the free amino group content was decreased significantly (P < 0.05). In conclusion, ultrasonic treatment changed the structural properties of MP under low-salt conditions and increased its physical stability, thereby contributing to the formation of emulsions. Ultrasonic treatment can generate free radicals; ultrasonic treatment time for 6 min can exacerbate the oxidation of MP. So, attention should be paid to the oxidizing effect of free radicals generated by ultrasound on MP when applying ultrasonic treatment to improve the functional properties of MP.
WEI Y B, HU L, ZHANG Z W, et al. Effects of hydroxyl radical oxidation on physicochemical properties and degradation of chicken myofibrillar protein[J]. Journal of Food Processing and Preservation, 2022, 46(12): e17217. DOI:10.1111/JFPP.17217.
KANG D C, ZHANG W G, LORENZO J M, et al. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(11): 1914-1933. DOI:10.1080/10408398.2020.1767538.
FU X Z, BELWAL T, CRAVOTTO G, et al. Sono-physical and sonochemical effects of ultrasound: primary applications in extraction and freezing operations and influence on food components[J]. Ultrasonics Sonochemistry, 2020, 60: 104726. DOI:10.1016/j.ultsonch.2019.104726.
TÉLLEZ-MORALES J, HERNÁNDEZ-SANTO B, RODRÍGUEZMIRANDA J. Effect of ultrasound on the techno-functional properties of food components/ingredients: a review[J]. Ultrasonics Sonochemistry, 2020, 61: 104787. DOI:10.1016/j.ultsonch.2019.104787.
LIU H T, ZHANG H, LIU Q, et al. Filamentous myosin in lowionic strength meat protein processing media: assembly mechanism, impact on protein functionality, and inhibition strategies[J]. Trends in Food Science and Technology, 2021, 112(1): 25-35. DOI:10.1016/j.tifs.2021.03.039.
AMIR A, PARISA S, NAFISEH S. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules, 2018, 111: 139-147. DOI:10.1016/j.ijbiomac.2017.12.167.
DENG X H, NI X X, HAN J H, et al. High-intensity ultrasound modified the functional properties of Neosalanx taihuensis myofibrillar protein and improved its emulsion stability[J]. Ultrasonics Sonochemistry, 2023, 97: 106458. DOI:10.1016/j.ultsonch.2023.106458.
KANG D C, WANG A R, ZHOU G H, et al. Power ultrasonic on mass transport of beef: effects of ultrasound intensity and NaCl concentration[J]. Innovative Food Science and Emerging Technologies, 2016, 35: 36-44. DOI:10.1016/j.ifset.2016.03.009.
LI K, FU L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids, 2020, 98: 105275. DOI:10.1016/j.foodhyd.2019.105275.
RAHMAN M, BYANJU B, GREWELL D, et al. High-power sonication of soy proteins: hydroxyl radicals and their effects on protein structure[J]. Ultrasonics Sonochemistry, 2020, 64: 105019. DOI:10.1016/j.ultsonch.2020.105019.
HAN K Y, FENG X, YANG Y L, et al. Changes in the physicochemical, structural and emulsifying properties of chicken myofibrillar protein via microfluidization[J]. Innovative Food Science and Emerging Technologies, 2023, 83: 103236. DOI:10.1016/J.IFSET.2022.103236.
XU Y J, ZHAO X, BIAN G L, et al. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: effect of glycosylation[J]. LWT-Food Science and Technology, 2018, 95: 209-215. DOI:10.1016/j.lwt.2018.04.051.
HAN G, LI Y X, LIU Q, et al. Improved water solubility of myofibrillar proteins by ultrasound combined with glycation: a study of myosin molecular behavior[J]. Ultrasonics Sonochemistry, 2022, 89: 106140. DOI:10.1016/j.ultsonch.2022.106140.
FLORES-JIMÉNEZ N, ULLOA J, URÍAS-SILVAS J, et al. Influence of high-intensity ultrasound on physicochemical and functional properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate[J]. Ultrasonics Sonochemistry, 2022, 84: 105976. DOI:10.1016/j.ultsonch.2022.105976.
WEN C T, ZHANG J X, WEI Q, et al. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions[J]. Food Chemistry, 2020, 331: 127374. DOI:10.1016/j.foodchem.2020.127374.
LI K, LIU J Y, FU L, et al. Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat[J]. AsianAustralasian Journal of Animal Sciences, 2019, 32(5): 721-733. DOI:10.5713/ajas.18.0389.
CUI Q, ZHANG A Q, LI R, et al. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates[J]. Food Bioscience, 2020, 38(2): 100747. DOI:10.1016/j.fbio.2020.100747.
PENG Z Y, ZHU M M, ZHANG J, et al. Physicochemical and structural changes in myofibrillar proteins from porcine Longissimus dorsi subjected to microwave combined with air convection thawing treatment[J]. Food Chemistry, 2020, 343(4): 128412. DOI:10.1016/j.foodchem.2020.128412.
LIU H T, ZHANG H, LIU Q, et al. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound[J]. Ultrasonics Sonochemistry, 2020, 67: 105160. DOI:10.1016/j.ultsonch.2020.105160.
CHEN J H, ZHANG X, FU M Y, et al. Ultrasound-assisted covalent reaction of myofibrillar protein: the improvement of functional properties and its potential mechanism[J]. Ultrasonics Sonochemistry, 2021, 76: 105652. DOI:10.1016/j.ultsonch.2021.105652.
SHI X J, ZOU H N, SUN S, et al. Application of high-pressure homogenization for improving the physicochemical, functional and rheological properties of myofibrillar protein[J]. International Journal of Biological Macromolecules, 2019, 138: 425-432. DOI:10.1016/j.ijbiomac.2019.07.110.
ESTEBAN P P, JENKINS A, ARNOT T. Elucidation of the mechanisms of action of bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential[J]. Colloids and Surfaces B: Biointerfaces, 2016, 139: 87-94. DOI:10.1016/j.colsurfb.2015.11.030.
NAKASAWA T, TAKAHASHI M, MATSUZAWA F, et al. Critical regions for assembly of vertebrate nonmuscle myosin Ⅱ[J]. Biochemistry, 2005, 44(1): 174-183. DOI:10.1021/bi048807h.
AMIR A, ALIREZA M, SORAYA S, et al. Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins[J]. Innovative Food Science and Emerging Technologies, 2019, 56: 102191. DOI:10.1016/j.ifset.2019.102191.
WANG H F, YANG H J, CHEN X, et al. Structural basis for highintensity ultrasound treatment in the rheology of myofibrillar protein extracted from white croaker in relation to their solubility[J]. LWTFood Science and Technology, 2022, 156: 112979. DOI:10.1016/j.lwt.2021.112979.
LI Z Y, WANG J Y, ZHENG B D, et al. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J]. Ultrasonics Sonochemistry, 2020, 65: 105063. DOI:10.1016/j.ultsonch.2020.105063.
BEZERRA J, SANCHES E, LAMARÃO C, et al. Ultrasound and effect on the surface hydrophobicity of proteins: a meta-analysis[J]. International Journal of Food Science and Technology, 2022, 57(7): 4015-4026. DOI:10.1111/ijfs.15774.
LEE H, YILDIZ G, DOSSANTOS L, et al. Soy protein nanoaggregates with improved functional properties prepared by sequential pH treatment and ultrasonication[J]. Food Hydrocolloids, 2016, 55: 200-209. DOI:10.1016/j.foodhyd.2015.11.022.
ZHU Z B, ZHU W D, YI J H, et al. Effects of sonication on the physicochemical and functional properties of walnut protein isolate[J]. Food Research International, 2018, 106: 853-861. DOI:10.1016/j.foodres.2018.01.060.
SOLADOYE O, JUÁREZ M L, AALHUS J, et al. Protein oxidation in processed meat: mechanisms and potential implications on human health[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(2): 106-122. DOI:10.1111/1541-4337.12127.
LI N, ZHANG K X, DU J Y, et al. High-intensity ultrasound improved the physicochemical and gelling properties of Litopenaeus vannamei myofibrillar protein[J]. Ultrasonics Sonochemistry, 2022, 90: 106217. DOI:10.1016/j.ultsonch.2022.106217.
HU H, WU J, LI-CHAN E C Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions[J]. Food Hydrocolloids, 2013, 30(2): 647-655. DOI:10.1016/j.foodhyd.2012.08.001.
LIU R, LIU Q, XIONG S B, et al. Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp[J]. Ultrasonics Sonochemistry, 2017, 37: 150-157. DOI:10.1016/j.ultsonch.2016.12.039.
KEHM R, BALDENSPERGER T, RAUPBACH J, et al. Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases[J]. Redox Biology, 2021, 42: 101901. DOI:10.1016/j.redox.2021.101901.
LI D Y, TAN Z F, LIU Z Q, et al. Effect of hydroxyl radical induced oxidation on the physicochemical and gelling properties of shrimp myofibrillar protein and its mechanism[J]. Food Chemistry, 2021, 351: 129344. DOI:10.1016/j.foodchem.2021.129344.
LANGE R, BALNY C. UV-visible derivative spectroscopy under high pressure[J]. Biochim Biophys Acta, 2002, 1595(1/2): 80-93. DOI:10.1016/S0167-4838(01)00336-3.
CHEN L, LI C Y, ULLAH N, et al. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation[J]. Meat Science, 2016, 121: 228-237. DOI:10.1016/j.meatsci.2016.06.010.
GU R X, LI F, LI D P, et al. Effects of ferulic acid on the oxidation stability and nitrozation ofmyofibrillar proteins under oxidative stress[J]. Food Chemistry Advances, 2022(1): 100016. DOI:10.1016/j.focha.2022.100016.