Fat is one of the most important nutritional components in foods. It not only endows foods with unique flavor and taste and provides the energy needed by the human body, but also has a significant impact on the structure and overall quality of foods. However, excessive intake of fat is not conducive to human health. Therefore, it is hoped that the use of fat mimics to replace fat in food will reduce the harm of excessive intake of fat to the human body while maintaining the original flavor of foods as much as possible. This article reviews the classification of fat replacers and fat mimics and recent research on the role and application of fat mimics in foods, outlines the basis for the classification of fat replacers into fat substitutes and fat mimics, with emphasis on the mechanisms of action, advantages, limitations, roles and applications of single and mixed fat mimics. It also proposes future strategies for the research and development of fat mimics in order to provide a direction for the development of healthy and safe fat mimics.
JUNG D, OH I, LEE J, et al. Utilization of butter and oleogel blends in sweet pan bread for saturated fat reduction: dough rheology and baking performance[J]. LWT-Food Science and Technology, 2020, 125: 109194. DOI:10.1016/j.lwt.2020.109194.
ARON-WISNEWSKY J, WARMBRUNN M V, NIEUWDORP M, et al. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies[J]. Gastroenterology, 2021, 160(2): 573-599. DOI:10.1053/j.gastro.2020.10.057.
BARRON E, CLARK R, HEWINGS R, et al. Progress of the healthier you: NHS diabetes prevention programme: referrals, uptake and participant characteristics[J]. Diabetic Medicine, 2018, 35(4): 513-518. DOI:10.1111/dme.13562.
SARROCA S, GATIUS A, RODRÍGUEZ-FARRÉ E, et al. Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer’s disease via modulation of proteolytic mechanisms[J]. The Journal of Nutritional Biochemistry, 2021, 89: 108569. DOI:10.1016/j.jnutbio.2020.108569.
SPERANZA A, CORRADINI M G, HARTMAN T G, et al. Influence of emulsifier structure on lipid bioaccessibility in oil-water nanoemulsions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6505-6515. DOI:10.1021/jf401548r.
SHAHEEN S, KAMAL M, ZHAO C, et al. Fat substitutes and lowcalorie fats: a compile of their chemical, nutritional, metabolic and functional properties[J]. Food Reviews International, 2023, 39(8): 5501-5527. DOI:10.1080/87559129.2022.2073368.
BERGHOLZ C M. Safety evaluation of olestra, a nonabsorbed, fatlike fat replacement[J]. Critical Reviews in Food Science and Nutrition, 1992, 32(2): 141-146. DOI:10.1080/10408399209527588.
JANDACEK R J. Review of the effects of dilution of dietary energy with olestra on energy intake[J]. Physiology & Behavior, 2012, 105(5): 1124-1131. DOI:10.1016/j.physbeh.2011.12.018.
SØRENSEN L B, CUETO H T, ANDERSEN M T, et al. The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake[J]. The American Journal of Clinical Nutrition, 2008, 87(5): 1163-1169. DOI:10.1093/ajcn/87.5.1163.
MAKI K C, DAVIDSON M H, TSUSHIMA R, et al. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil[J]. The American Journal of Clinical Nutrition, 2002, 76(6): 1230-1236. DOI:10.1093/ajcn/76.6.1230.
YANKAH V V, AKOH C C. Lipase-catalyzed acidolysis of tristearin with oleic or caprylic acids to produce structured lipids[J]. Journal of the American Oil Chemists’ Society, 2000, 77(5): 495-500. DOI:10.1007/s11746-000-0079-4.
PRABHAVATHI DEVI B L A, GANGADHAR K N, PRASAD R B N, et al. Nutritionally enriched 1,3-diacylglycerol-rich oil: low calorie fat with hypolipidemic effects in rats[J]. Food Chemistry, 2018, 248: 210-216. DOI:10.1016/j.foodchem.2017.12.066.
MA Z, BOYE J I. Advances in the design and production of reduced-fat and reduced-cholesterol salad dressing and mayonnaise: a review[J]. Food and Bioprocess Technology, 2013, 6(3): 648-670. DOI:10.1007/s11947-012-1000-9.
PENG X Y, YAO Y. Carbohydrates as fat replacers[J]. Annual Review of Food Science and Technology, 2017, 8: 331-351. DOI:10.1146/annurev-food-030216-030034.
CLARETO S S, NELSON D L, PEREIRA A J G. Influence of a protein concentrate used as a fat substitute on the quality of cheese bread[J]. Brazilian Archives of Biology and Technology, 2006, 49(6): 1019-1025. DOI:10.1590/s1516-89132006000700020.
ZHANG Q T, TU Z C, XIAO H, et al. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate[J]. Food and Bioproducts Processing, 2014, 92(1): 30-37. DOI:10.1016/j.fbp.2013.07.006.
SAĞLAM D, VENEMA P, DE VRIES R, et al. Preparation of high protein micro-particles using two-step emulsification[J]. Food Hydrocolloids, 2011, 25(5): 1139-1148. DOI:10.1016/j.foodhyd.2010.10.011.
NISHINARI K, FANG Y, GUO S, et al. Soy proteins: a review on composition, aggregation and emulsification[J]. Food Hydrocolloids, 2014, 39: 301-318. DOI:10.1016/j.foodhyd.2014.01.013.
CHEUNG I, GOMES F, RAMSDEN R, et al. Evaluation of fat replacers AvicelTM, N Lite STM and SimplesseTM in mayonnaise[J]. International Journal of Consumer Studies, 2002, 26(1): 27-33. DOI:10.1046/j.1470-6431.2002.00207.x.
RUTHIG D J, SIDER D, MECKLING-GILL K A. Health benefits of dietary fat reduction by a novel fat replacer: mimix[J]. International Journal of Food Sciences and Nutrition, 2001, 52(1): 61-69. DOI:10.1080/09637480020027237.
ORDONEZ M, ROVIRA J, JAIME I. The relationship between the composition and texture of conventional and low-fat frankfurters[J]. International Journal of Food Science and Technology, 2001, 36(7): 749-758. DOI:10.1046/j.1365-2621.2001.00525.x.
YASHINI M, C K S, SAHANA S, et al. Protein-based fat replacers: a review of recent advances[J]. Food Reviews International, 2021, 37(2): 197-223. DOI:10.1080/87559129.2019.1701007.
NOURMOHAMMADI N, AUSTIN L, CHEN D. Protein-based fat replacers: a focus on fabrication methods and fat-mimic mechanisms[J]. Foods, 2023, 12(5): 957. DOI:10.3390/foods12050957.
LIU X, CHEN X W, GUO J, et al. Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil[J]. Food Hydrocolloids, 2016, 61: 747-755. DOI:10.1016/j.foodhyd.2016.06.037.
OH I K, LEE S Y. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins[J]. Food Hydrocolloids, 2018, 77: 796-802. DOI:10.1016/j.foodhyd.2017.11.022.
CHEN Y W, SHE Y B, ZHANG R S, et al. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases[J]. Food Science & Nutrition, 2019, 8(1): 16-22. DOI:10.1002/fsn3.1303.
MIGUEL G A, JACOBSEN C, PRIETO C, et al. Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil[J]. Journal of Food Engineering, 2019, 263: 348-358. DOI:10.1016/j.jfoodeng.2019.07.019.
DAI S H, JIANG F T, SHAH N P, et al. Functional and pizza bake properties of Mozzarella cheese made with konjac glucomannan as a fat replacer[J]. Food Hydrocolloids, 2019, 92: 125-134. DOI:10.1016/j.foodhyd.2019.01.045.
COSTANTINO G, CALASSO M, MINERVINI F, et al. Use of exopolysaccharide-synthesizing lactic acid bacteria and fat replacers for manufacturing reduced-fat burrata cheese: microbiological aspects and sensory evaluation[J]. Microorganisms, 2020, 8(10): 1618. DOI:10.3390/microorganisms8101618.
JEDVERT K, HEINZE T. Cellulose modification and shaping: a review[J]. Journal of Polymer Engineering, 2017, 37(9): 845-860. DOI:10.1515/polyeng-2016-0272.
COLLA K, COSTANZO A, GAMLATH S. Fat replacers in baked food products[J]. Foods, 2018, 7(12): 192. DOI:10.3390/foods7120192.
YANG Y L, XU S Y. Roles of components of rice-based fat substitute in gelation[J]. Food Research International, 2007, 40(9): 1155-1160. DOI:10.1016/j.foodres.2007.06.010.
HU Y Y, LI C M, REGENSTEIN J M, et al. Preparation and properties of potato amylose-based fat replacer using super-heated quenching[J]. Carbohydrate Polymers, 2019, 223: 115020. DOI:10.1016/j.carbpol.2019.115020.
KAUSHIK A, SINGH M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization[J]. Carbohydrate Research, 2011, 346(1): 76-85. DOI:10.1016/j.carres.2010.10.020.
GUEDES-OLIVEIRA J M, COSTA-LIMA B R C, OLIVEIRA D, et al. Mixture design approach for the development of reduced fat lamb patties with carboxymethyl cellulose and inulin[J]. Food Science & Nutrition, 2019, 7(4): 1328-1336. DOI:10.1002/fsn3.965.
AAEN R, SIMON S, BRODIN F W, et al. The potential of TEMPO-oxidized cellulose nanofibrils as rheology modifiers in food systems[J]. Cellulose, 2019, 26(9): 5483-5496. DOI:10.1007/s10570-019-02448-3.
RUIZ-CAPILLAS C, TRIKI M, HERRERO A M, et al. Konjac gel as pork backfat replacer in dry fermented sausages: processing and quality characteristics[J]. Meat Science, 2012, 92(2): 144-150. DOI:10.1016/j.meatsci.2012.04.028.
RATHER S A, MASOODI F A, AKHTER R, et al. Xanthan gum as a fat replacer in goshtaba-a traditional meat product of India: effects on quality and oxidative stability[J]. Journal of Food Science and Technology, 2015, 52(12): 8104-8112. DOI:10.1007/s13197-015-1960-7.
CORREA M J, AÑÓN M C, PÉREZ G T, et al. Effect of modified celluloses on dough rheology and microstructure[J]. Food Research International, 2010, 43(3): 780-787. DOI:10.1016/j.foodres.2009.11.016.
PARÉS D, PÈLACH M À, TOLDRÀ M, et al. Nanofibrillated cellulose as functional ingredient in emulsion-type meat products[J]. Food and Bioprocess Technology, 2018, 11(7): 1393-1401. DOI:10.1007/s11947-018-2104-7.
TESCH S, GERHARDS C, SCHUBERT H. Stabilization of emulsions by OSA starches[J]. Journal of Food Engineering, 2002, 54(2): 167-174. DOI:10.1016/S0260-8774(01)00206-0.
LOBATO-CALLEROS C, RAMÍREZ-SANTIAGO C, VERNONCARTER E J, et al. Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt[J]. Journal of Food Engineering, 2014, 131: 110-115. DOI:10.1016/j.jfoodeng.2014.01.019.
BASIONY M, HASSABO R. Composition and quality of low-fat halloumi cheese made using modified starch as a fat replacer[J]. Starch-Stärke, 2022, 74(3/4): 2100211. DOI:10.1002/star.202100211.
ČERNÍKOVÁ M, BUŇKA F, POSPIECH M, et al. Replacement of traditional emulsifying salts by selected hydrocolloids in processed cheese production[J]. International Dairy Journal, 2010, 20(5): 336-343. DOI:10.1016/j.idairyj.2009.12.012.
LANEUVILLE S I, PAQUIN P, TURGEON S L. Formula optimization of a low-fat food system containing whey protein isolate-xanthan gum complexes as fat replacer[J]. Journal of Food Science, 2005, 70(8): s513-s519. DOI:10.1111/j.1365-2621.2005.tb11527.x.
SU H P, LIEN C P, LEE T N, et al. Development of lowfat mayonnaise containing polysaccharide gums as functional ingredients[J]. Journal of the Science of Food and Agriculture, 2010, 90(5): 806-812. DOI:10.1002/jsfa.3888.
CHUGH B, SINGH G, KUMBHAR B K. Studies on the optimization and stability of low-fat biscuit using carbohydrate-based fat replacers[J]. International Journal of Food Properties, 2015, 18(7): 1446-1459. DOI:10.1080/10942912.2013.833218.
GUO Y, ZHANG X H, HAO W H, et al. Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model[J]. Carbohydrate Polymers, 2018, 198: 620-630. DOI:10.1016/j.carbpol.2018.06.078.
PAXIMADA P, HOWARTH M, DUBEY B N. Double emulsions fortified with plant and milk proteins as fat replacers in cheese[J]. Journal of Food Engineering, 2021, 288: 110229. DOI:10.1016/j.jfoodeng.2020.110229.
DAN Y, BAEK Y, JEONG E W, et al. Development of a novel fat reduction system with quercetin-loaded annealed wheat starch for enhanced emulsifying and oxidative stability in low-fat mayonnaise[J]. Journal of Food Engineering, 2024, 364: 111812. DOI:10.1016/j.jfoodeng.2023.111812.
ANGOR M M, AL-ABDULLAH B M. Attributes of low-fat beef burgers made from formulations aimed at enhancing product quality[J]. Journal of Muscle Foods, 2010, 21(2): 317-326. DOI:10.1111/j.1745-4573.2009.00184.x.
FORKER A, ZAHN S, ROHM H. A combination of fat replacers enables the production of fat-reduced shortdough biscuits with highsensory quality[J]. Food and Bioprocess Technology, 2012, 5(6): 2497-2505. DOI:10.1007/s11947-011-0536-4.
JIMÉNEZ-COLMENERO F, TRIKI M, HERRERO A M, et al. Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages[J]. LWT-Food Science and Technology, 2013, 51(1): 158-163. DOI:10.1016/j.lwt.2012.10.016.
YAN L, YU D J, LIU R, et al. Microstructure and meltdown properties of low-fat ice cream: effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time[J]. Journal of Food Engineering, 2021, 291: 110291. DOI:10.1016/j.jfoodeng.2020.110291.
GÓMEZ-ESTACA J, PINTADO T, JIMÉNEZ-COLMENERO F, et al. The effect of household storage and cooking practices on quality attributes of pork Burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes[J]. LWT-Food Science and Technology, 2020, 119: 108909. DOI:10.1016/j.lwt.2019.108909.
DREHER J, WEIßMÜLLER M, HERRMANN K, et al. Influence of protein and solid fat content on mechanical properties and comminution behavior of structured plant-based lipids[J]. Food Research International, 2021, 145: 110416. DOI:10.1016/j.foodres.2021.110416.
LI J, WANG Y T, JIN W P, et al. Application of micronized konjac gel for fat analogue in mayonnaise[J]. Food Hydrocolloids, 2014, 35: 375-382. DOI:10.1016/j.foodhyd.2013.06.010.
MARANGONI A G, VAN DUYNHOVEN J P M, ACEVEDO N C, et al. Advances in our understanding of the structure and functionality of edible fats and fat mimetics[J]. Soft Matter, 2020, 16(2): 289-306. DOI:10.1039/C9SM01704F.