Fermented foods are rich in protein and free amino acids, which are decarboxylated by microbial amino acid decarboxylase to produce biogenic amines. Excessive ingestion of biogenic amines poses a threat to human health. Tyramine, a biogenic amine having high toxicity, is present in fermented foods in large quantities, so developing safe and effective methods to control tyramine is of practical significance for improving the safety of fermented foods. In this article, the physiological functions, harms and limit standard of tyramine in fermented foods are described with an emphasis on the formation mechanism and control methods of tyramine, so as to provide theoretical references for further improving the safety of fermented foods.
LI Y, HSIEH C H, LAI C W, et al. Tyramine detection using PEDOT: PSS/AuNPs/1-methyl-4-mercaptopyridine modified screen-printed carbon electrode with molecularly imprinted polymer solid phase extraction[J]. Biosensors and Bioelectronics, 2017, 87: 142-149. DOI:10.1016/j.bios.2016.08.006.
MANCA G, RU A, SIDDI G, et al. The effect of seasonality on the biogenic amines, free amino acids, and physico-chemical composition of raw milk Fiore Sardo cheese produced in Sardinia (Italy)[J]. Food Control, 2023, 145: 109486. DOI:10.1016/j.foodcont.2022.109486.
EKICI K, OMER A K. The determination of some biogenic amines in Turkish fermented sausages consumed in Van[J]. Toxicology Reports, 2018, 5: 639-643. DOI:10.1016/j.toxrep.2018.05.008.
KOEHLER P, EITENMILLER R. High pressure liquid chromatographic analysis of tyramine, phenylethylamine and tryptamine in sausage, cheese and chocolate[J]. Journal of Food Science, 1978, 43: 1245-1247. DOI:10.1111/J.1365-2621.1978.TB15279.X.
SAEYOON A, SUKKARN B, NOSOONGNOEN W, et al. Determination of N-trans-feruloyltyramine content and nitric oxide inhibitory and antioxidant activities of Tinospora crispa[J]. Asian Journal of Pharmaceutical Sciences, 2015, 97: 141-150. DOI:10.1016/j.ajps.2015.11.001.
LADERO V, CALLES-ENRÍQUEZ M, ÁNDEZ M, et al. Toxicological effects of dietary biogenic amines[J]. Current Nutrition & Food Science, 2010, 6: 145-156. DOI:10.13039/501100000780.
BROADLEY K J. The vascular effects of trace amines and amphetamines[J]. Pharmacology & Therapeutics, 2010, 125(3): 363-375. DOI:10.1016/j.pharmthera.2009.11.005.
ANDERSEN G, MARCINEK P, SULZINGER N, et al. Food sources and biomolecular targets of tyramine[J]. Nutrition Reviews, 2019, 77(2): 107-115. DOI:10.1093/nutrit/nuy036.
JAIRATH G, SINGH P K, DABUR R S, et al. Biogenic amines in meat and meat products and its public health significance: a review[J]. Journal of Food Science and Technology, 2015, 52(11): 6835-6846. DOI:10.1007/s13197-015-1860-x.
WÓJCIK W, ŁUKASIEWICZ M, PUPPEL K. Biogenic amines: formation, action and toxicity: a review[J]. Journal of the Science of Food and Agriculture, 2021, 101(7): 2634-2640. DOI:10.1002/jsfa.10928.
LUO Y, HUANG Y, XU R X, et al. Primary and secondary succession mediate the accumulation of biogenic amines during industrial semidry Chinese rice wine fermentation[J]. Applied and Environmental Microbiology, 2020, 86(17): e01177-e01120. DOI:10.1128/AEM.01177-20.
DEL RIO B, REDRUELLO B, LINARES D M, et al. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture[J]. Food Chemistry, 2017, 218: 249-255. DOI:10.1016/j.foodchem.2016.09.046.
ÖZOGUL F, HAMED I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(10): 1660-1670. DOI:10.1080/10408398.2016.1277972.
TOROVIĆ L, GUSMAN V, KVRGIĆ S. Biogenic amine and microbiological profile of Serbian dry fermented sausages of artisanal and industrial origin and associated health risk[J]. Food Additives & Contaminants: Part B, 2020, 13(1): 64-71. DOI:10.1080/19393210.2019.1697380.
GUAN R F, LIU Z F, ZHANG J J, et al. Investigation of biogenic amines in sufu (furu): a Chinese traditional fermented soybean food product[J]. Food Control, 2013, 31(2): 345-352. DOI:10.1016/j.foodcont.2012.10.033.
LI J, ZHOU L N, FENG W, et al. Comparison of biogenic amines in Chinese commercial soy sauces[J]. Molecules, 2019, 24(8): 1522. DOI:10.3390/molecules24081522.
YANG J, DING X W, QIN Y R, et al. Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd[J]. Journal of Agricultural and Food Chemistry, 2014, 62(31): 7947-7954. DOI:10.1021/jf501772s.
SHUKLA S, PARK H K, KIM J K, et al. Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang)[J]. Food and Chemical Toxicology, 2010, 48(5): 1191-1195. DOI:10.1016/j.fct.2010.01.034.
HAN G H, BAHN K N, SON Y W, et al. Evaluation of biogenic amines in Korean commercial fermented foods[J]. Korean Journal of Food Science and Technology, 2006, 38(6): 730-737.
WU Y Y, CHEN Y F, LI L H, et al. Study on biogenic amines in various dry salted fish consumed in China[J]. Journal of Ocean University of China, 2016, 15(4): 681-689. DOI:10.1007/s11802-016-2958-0.
KÖSE S, KORAL S, TUFAN B, et al. Biogenic amine contents of commercially processed traditional fish products originating from European countries and Turkey[J]. European Food Research and Technology, 2012, 235(4): 669-683. DOI:10.1007/s00217-012-1794-8.
JIANG W, XU Y, LI C S, et al. Biogenic amines in commercially produced Yulu, a Chinese fermented fish sauce[J]. Food Additives & Contaminants: Part B, 2014, 7(1): 25-29. DOI:10.1080/19393210.2013.831488.
NEVIJO Z, TANJA B, KREŠIMIR S, et al. Biogenic amine content in retailed cheese varieties produced with commercial bacterial or mold cultures[J]. Processes, 2021, 10(1): 10. DOI:10.3390/pr10010010.
LIU Y, HAN F L, LIU Y J, et al. Determination of biogenic amines in wine using modified liquid-liquid extraction with high performance liquid chromatography-fluorescence detector[J]. Food Analytical Methods, 2020, 13(4): 911-922. DOI:10.1007/s12161-020-01710-w.
LI C Y, HAN X Y, HAN B, et al. Survey of the biogenic amines in craft beer from the Chinese market and the analysis of the formation regularity during beer fermentation[J]. Food Chemistry, 2023, 405: 134861. DOI:10.1016/j.foodchem.2022.134861.
SPANO G, RUSSO P, LONVAUD-FUNEL A, et al. Biogenic amines in fermented foods[J]. European Journal of Clinical Nutrition, 2010, 64(Suppl 3): S95-S100. DOI:10.1038/ejcn.2010.218.
PEREIRA C I, MATOS D, ROMÃO M V S, et al. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force[J]. Applied and Environmental Microbiology, 2009, 75(2): 345-352. DOI:10.1128/AEM.01958-08.
RESTUCCIA D, SPIZZIRRI U G, BONESI M, et al. Evaluation of fatty acids and biogenic amines profiles in mullet and tuna roe during six months of storage at 4 ℃[J]. Journal of Food Composition and Analysis, 2015, 40: 52-60. DOI:10.1016/j.jfca.2014.12.014.
LOIZZO M R, SPIZZIRRI U G, BONESI M, et al. Influence of packaging conditions on biogenic amines and fatty acids evolution during 15 months storage of a typical spreadable salami (‘Nduja)[J]. Food Chemistry, 2016, 213: 115-122. DOI:10.1016/j.foodchem.2016.06.061.
LANDETE J M, DE LAS RIVAS B, MARCOBAL A, et al. Updated molecular knowledge about histamine biosynthesis by bacteria[J]. Critical Reviews in Food Science and Nutrition, 2008, 48(8): 697-714. DOI:10.1080/10408390701639041.
LI Y W, YAN T T, YIN L J, et al. Isolation and identification of tyramine-producing bacteria and their biogenic amines formation during fermentation of sufu[J]. Cellular and Molecular Biology, 2022, 68(1): 75-88. DOI:10.14715/cmb/2022.68.1.11.
ZHANG Y H, SHAN B, GONG J S, et al. Mechanism of biogenic amine synthesis of Enterococcus faecium isolated from Sanchun ham[J]. Food Science & Nutrition, 2022, 10(6): 2036-2049. DOI:10.1002/fsn3.2820.
ZHAO L, LIU Y, XU Q, et al. Microbial community succession and its correlation with quality characteristics during gray sufu fermentation[J]. Foods, 2023, 12(14): 2767. DOI:10.3390/foods12142767.
INOĞLU Z N, TUNCER Y. Safety assessment of Enterococcus faecium and enterococcus faecalis strains isolated from Turkish tulum cheese[J]. Journal of Food Safety, 2013, 33(3): 369-377.
MORENO-ARRIBAS V, LONVAUD-FUNEL A. Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine[J]. FEMS Microbiology Letters, 2001, 195(1): 103-107. DOI:10.1016/S0378-1097(00)00559-0.
BARGOSSI E, GARDINI F, GATTO V, et al. The capability of tyramine production and correlation between phenotypic and genetic characteristics of Enterococcus faecium and Enterococcus faecalis strains[J]. Frontiers in Microbiology, 2015, 6: 1371. DOI:10.3389/fmicb.2015.01371.
LIU F, WANG X X, DU L H, et al. Effect of NaCl treatments on tyramine biosynthesis of Enterococcus faecalis[J]. Journal of Food Protection, 2015, 78(5): 940-945. DOI:10.4315/0362-028X.JFP-14-443.
SUZZI G, TORRIANI S. Editorial: biogenic amines in foods[J]. Frontiers in Microbiology, 2015, 6: 146568. DOI:10.3389/fmicb.2015.00472.
PESSIONE E, PESSIONE A, LAMBERTI C, et al. First evidence of a membrane-bound, tyramine and β-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study[J]. Proteomics, 2009, 9(10): 2695-2710. DOI:10.1002/pmic.200800780.
WANG Y B, BAO X Y, WANG F F, et al. Dynamic detection of biogenic amines as a quality indicator and their relationship with free amino acids profiles in large yellow croaker (Pseudosciaena crocea)[J]. Journal of Food Science, 2019, 84(2): 254-260. DOI:10.1111/1750-3841.14425.
CHOI E J, PARK H W, KIM S B, et al. Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.)[J]. Food Control, 2019, 98: 501-509. DOI:10.1016/j.foodcont.2018.12.007.
DONG C H, DU X, ZHONG Q, et al. Effects of tyrosine decarboxylase negative strains from Harbin dry sausage on the growth and tyramine production of foodborne pathogens[J]. Food Control, 2021, 121: 107600. DOI:10.1016/j.foodcont.2020.107600.
MAH J H, HWANG H J. Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture[J]. Food Control, 2009, 20(9): 796-801. DOI:10.1016/j.foodcont.2008.10.005.
LIU S P, YAO H L, SUN M F, et al. Heterologous expression and characterization of amine oxidases from Saccharopolyspora to reduce biogenic amines in Huangjiu[J]. LWT-Food Science and Technology, 2022, 169: 113963. DOI:10.1016/j.lwt.2022.113963.
ZHAO Y R, SANG X, HAO H S, et al. Novel starter cultures Virgibacillus spp. selected from grasshopper sub shrimp paste to inhibit biogenic amines accumulation[J]. AMB Express, 2021, 11(1): 25. DOI:10.1186/s13568-021-01186-9.
GARCÍA-RUIZ A, GONZÁLEZ-ROMPINELLI E M, BARTOLOMÉ B, et al. Potential of wine-associated lactic acid bacteria to degrade biogenic amines[J]. International Journal of Food Microbiology, 2011, 148(2): 115-120. DOI:10.1016/j.ijfoodmicro.2011.05.009.
MARTUSCELLI M, CRUDELE M A, GARDINI F, et al. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages[J]. Letters in Applied Microbiology, 2000, 31(3): 228-232. DOI:10.1046/j.1365-2672.2000.00796.x.
EOM J S, SEO B Y, CHOI H S. Biogenic amine degradation by Bacillus species isolated from traditional fermented soybean food and detection of decarboxylase-related genes[J]. Journal of Microbiology and Biotechnology, 2015, 25(9): 1519-1527. DOI:10.4014/jmb.1506.06006.
ZHANG Y, QIN Y X, WANG Y, et al. Lactobacillus plantarum LPL-1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages[J]. LWT-Food Science and Technology, 2020, 128: 109385. DOI:10.1016/j.lwt.2020.109385.
MIAO J Y, LIU G, KE C, et al. Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli[J]. Food Control, 2016, 65: 63-72. DOI:10.1016/j.foodcont.2016.01.023.
SANDIFORD S, UPTON M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(3): 1539-1547. DOI:10.1128/AAC.05397-11.
SAELAO S, MANEERAT S, THONGRUCK K, et al. Reduction of tyramine accumulation in Thai fermented shrimp (Kung-som) by nisin Z-producing Lactococcus lactis KTH0-1S as starter culture[J]. Food Control, 2018, 90: 249-258. DOI:10.1016/j.foodcont.2018.03.003.
ZDOLEC N, BOGDANOVIĆ T, PAŽIN V, et al. Control of biogenic amines in dry sausages inoculated with dairy-originated bacteriocinogenic Enterococcus faecalis EF-101[J]. Veterinarski Arhiv, 2020, 90: 77-85. DOI:10.24099/vet.arhiv.0459.
GUO J, LUO W, FAN J, et al. Co-inoculation of Staphylococcus piscifermentans and salt-tolerant yeasts inhibited biogenic amines formation during soy sauce fermentation[J]. Food Research International, 2020, 137: 109436. DOI:10.1016/j.foodres.2020.109436.
FONG F L Y, LAM K Y, SAN LAU C, et al. Reduction in biogenic amines in Douchi fermented by probiotic bacteria[J]. PLoS ONE, 2020, 15(3): e0230916. DOI:10.1371/journal.pone.0230916.
ZHANG Y H, LI Z Z, HU Y J, et al. Screening and identification of biogenic amine oxidase producing strains in Sanchuan Ham and their effect on biogenic amine accumulation[J]. Journal of Food Science and Technology, 2022, 59(8): 3043-3052. DOI:10.1007/s13197-022-05419-y.
CHENG S M, XU Y C, LAN X. Isolation, characterization, and application of biogenic amines-degrading strains from fermented food[J]. Journal of Food Safety, 2020, 40(1): e12716. DOI:10.1111/jfs.12716.
HAN J, LIN X P, LIANG H P, et al. Improving the safety and quality of Roucha using amine-degrading lactic acid bacteria starters[J]. Food Research International, 2022, 161: 111918. DOI:10.1016/j.foodres.2022.111918.
CALLEJÓN S, SENDRA R, FERRER S, et al. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 185-198. DOI:10.1007/s00253-013-4829-6.
DIAS I, LARANJO M, POTES M E, et al. Co-inoculation with Staphylococcus equorum and Lactobacillus sakei reduces vasoactive biogenic amines in traditional dry-cured sausages[J]. International Journal of Environmental Research and Public Health, 2021, 18(13): 7100. DOI:10.3390/ijerph18137100.
SIMION A M C, VIZIREANU C, ALEXE P, et al. Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety[J]. Food Control, 2014, 35(1): 123-131. DOI:10.1016/j.foodcont.2013.06.047.
DONG C H, SHI S, PAN N, et al. Inhibitory mechanism of tyramine-degrading strains on reducing tyramine accumulation in Harbin dry sausage during fermentation[J]. Food Control, 2022, 137: 108952. DOI:10.1016/j.foodcont.2022.108952.
GUO N, ZANG Y P, CUI Q, et al. The preservative potential of Amomum tsaoko essential oil against E. coil, its antibacterial property and mode of action[J]. Food Control, 2017, 75: 236-245. DOI:10.1016/j.foodcont.2016.12.013.
HUANG L Y, WANG Y, LI R T, et al. Thyme essential oil and sausage diameter effects on biogenic amine formation and microbiological load in smoked horse meat sausage[J]. Food Bioscience, 2021, 40: 100885. DOI:10.1016/j.fbio.2021.100885.
JIA W, ZHANG R, SHI L, et al. Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausage[J]. Food Chemistry, 2020, 321: 126723. DOI:10.1016/j.foodchem.2020.126723.
ZHOU X X, QIU M T, ZHAO D D, et al. Inhibitory effects of spices on biogenic amine accumulation during fish sauce fermentation[J]. Journal of Food Science, 2016, 81(4): M913-M920. DOI:10.1111/1750-3841.13255.
NAILA A, FLINT S, FLETCHER G, et al. Control of biogenic amines in food: existing and emerging approaches[J]. Journal of Food Science, 2010, 75(7): R139-R150. DOI:10.1111/j.1750-3841.2010.01774.x.
JIN Z K, LI L, ZHENG Y, et al. Inhibition of Bacillus cereus by garlic (Allium sativum) essential oil during manufacture of white sufu, a traditional Chinese fermented soybean curd[J]. LWT-Food Science and Technology, 2020, 130: 109634. DOI:10.1016/j.lwt.2020.109634.
LEE J Y, KIM Y G, HER J Y, et al. Reduction of biogenic amine contents in fermented soybean paste using food additives[J]. LWT-Food Science and Technology, 2018, 98: 470-476. DOI:10.1016/j.lwt.2018.09.015.
ZHANG Q Q, JIANG M, RUI X, et al. Effect of rose polyphenols on oxidation, biogenic amines and microbial diversity in naturally dry fermented sausages[J]. Food Control, 2017, 78: 324-330. DOI:10.1016/j.foodcont.2017.02.054.
SAHU L, PANDA S K, PARAMITHIOTIS S, et al. Biogenic amines in fermented foods: overview[J]. Fermented Foods-Part Ⅰ: Biochemistry and Biotechnology, 2016, 2016: 15.
LIU B, CAO Z N, QIN L H, et al. Investigation of the synthesis of biogenic amines and quality during high-salt liquid-state soy sauce fermentation[J]. LWT-Food Science and Technology, 2020, 133: 109835. DOI:10.1016/j.lwt.2020.109835.
ZHANG C C, CHEN J B, LI X Q, et al. Bacterial community and quality characteristics of the fermented potherb mustard (Brassica juncea var. multiceps) under modified atmospheres[J]. Food Research International, 2019, 116: 266-275. DOI:10.1016/j.foodres.2018.08.032.
ZHAO N, LAI H M, HE W, et al. Reduction of biogenic amine and nitrite production in low-salt Paocai by controlled package during storage: a study comparing vacuum and aerobic package with conventional salt solution package[J]. Food Control, 2021, 123: 107858. DOI:10.1016/j.foodcont.2020.107858.
SUN Y Y, XU Y S, GAO P, et al. Improvement of the quality stability of vacuum-packaged fermented fish (Suanyu) stored at room temperature by irradiation and thermal treatments[J]. International Journal of Food Science & Technology, 2021, 56(1): 224-232. DOI:10.1111/ijfs.14622.