PDF (4.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effect of Hyaluronic Acid on Physicochemical and Gel Properties of Surimi from Litopenaeus vannamei

Kaiping YIN1 Duanquan LIN1,2,3Yulei CHEN1,2,3Lingjing ZHANG1,2,3Wenxiong HE4Ling WENG1,2,3Minjie CAO1,2,3Lechang SUN1,2,3 ()
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
National and Local Joint Engineering Research Center for Deep Processing Technology of Aquatic Products, Xiamen 361021, China
Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
Xiamen a1 Snacks Lab Co. Ltd., Xiamen 361021, China
Show Author Information

Abstract

This study investigated the effects of different concentrations (0.1%, 0.3%, 0.5%, 0.8% and 1.0% by mass relative to shrimp meat) of hyaluronic acid (HA) on the gel and physicochemical properties of surimi made from Litopenaeus vannamei. The results showed that adding a certain amount of HA improved the textural characteristics, gel strength, brightness and whiteness of shrimp surimi gel, promoted the transformation of free and immobilized water into bound water, and increased the water-binding characteristics and water-holding capacity. Rheological analysis showed that addition of a certain amount of HA improved the storage moduli of shrimp surimi, but low concentrations of HA could have adverse effects on the apparent viscosity. Chemical force analysis showed that ionic bonds first decreased and then increased, while hydrogen bonds exhibited the opposite trend with the addition of HA. An appropriate amount of HA could improve hydrophobic interactions but the formation of disulfide bonds from sulfhydryl oxidation was also inhibited by HA. Moreover, HA could interact with shrimp surimi proteins, inhibit the formation of protein polymers, change the conformation of proteins, and promote the transformation of the secondary structure of proteins from α-helix to β-structure and random coil. The microstructure of shrimp surimi gel was improved by adding an appropriate amount of HA, becoming more uniform and denser. Among all samples with different levels of HA, shrimp surimi gel with the addition of 0.8% HA had the highest hardness, gumminess, chewiness, gel strength, storage modulus and the densest microstructure, and its waterholding capacity significantly improved when compared with that of the control group (P < 0.05). However, the textural characteristics, gel strength, water-holding capacity and storage modulus of shrimp surimi gel with 0.1% HA were lower than those of the control group, and the microstructure was looser.

CLC number: TS254.4 Document code: A Article ID: 1002-6630(2024)12-0078-12

References

[1]

KIR M, SUNAR M C, TOPUZ M, et al. Thermal acclimation capacity and standard metabolism of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) at different temperature and salinity combinations[J]. Journal of Thermal Biology, 2023, 112: 103429. DOI:10.1016/j.jtherbio.2022.103429.

[3]

DONG X, WANG J, RAGHAVAN V. Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins[J]. Food Chemistry, 2021, 337: 127811. DOI:10.1016/j.foodchem.2020.127811.

[4]

XIAO H, YANG Y, YU J, et al. Alaska pollock surimi addition affects Pacific white shrimp (Litopenaeus vannamei) surimi gel properties[J]. Rheologica Acta, 2021, 60(12): 741-749. DOI:10.1007/s00397-021-01303-2.

[5]

YI S M, HUO Y, QIAO C P, et al. Synergistic gelation effects in surimi mixtures composed of Nemipterus virgatus and Hypophthalmichtys molitrix[J]. Journal of Food Science, 2019, 84(12): 3634-3641. DOI:10.1111/1750-3841.14761.

[6]

ZHOU X X, CHEN T, LIN H H, et al. Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols[J]. Food Hydrocolloids, 2019, 90: 82-89. DOI:10.1016/j.foodhyd.2018.07.031.

[7]

LIANG F, LIN L, HE T H, et al. Effect of transglutaminase on gel properties of surimi and precocious Chinese mitten crab (Eriocheir sinensis) meat[J]. Food Hydrocolloids, 2020, 98: 105261. DOI:10.1016/j.foodhyd.2019.105261.

[8]

ZHANG X H, GUO Q Y, SHI W Z. Ultrasound-assisted processing: changes in gel properties, water-holding capacity, and protein aggregation of low-salt Hypophthalmichthys molitrix surimi by soy protein isolate[J]. Ultrasonics Sonochemistry, 2023, 92: 106258. DOI:10.1016/j.ultsonch.2022.106258.

[9]

LIU J H, WANG X P, DING Y T. Optimization of adding konjac glucomannan to improve gel properties of low-quality surimi[J]. Carbohydrate Polymers, 2013, 92(1): 484-489. DOI:10.1016/j.carbpol.2012.08.096.

[10]

ZHANG H M, XIONG Y T, BAKRY A M, et al. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi[J]. Food Hydrocolloids, 2019, 88: 256-264. DOI:10.1016/j.foodhyd.2018.10.010.

[11]

KAWADA C, KIMURA M, MASUDA Y, et al. Oral administration of hyaluronan prevents skin dryness and epidermal thickening in ultraviolet irradiated hairless mice[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 153: 215-221. DOI:10.1016/j.jphotobiol.2015.09.020.

[12]

TASHIRO T, SEINO S, SATO T, et al. Oral Administration of polymer hyaluronic acid alleviates symptoms of knee osteoarthritis: a double-blind, placebo-controlled study over a 12-month period[J]. The Scientific World Journal, 2012, 2012: 167928. DOI:10.1100/2012/167928.

[14]

FALLACARA A, BALDINI E, MANFREDINI S, et al. Hyaluronic acid in the third millennium[J]. Polymers, 2018, 10(7): 701.

[15]

SUTARIYA S G, SALUNKE P. Effect of hyaluronic acid on milk properties: rheology, protein stability, acid and rennet gelation properties[J]. Food Hydrocolloids, 2022, 131: 107740. DOI:10.1016/j.foodhyd.2022.107740.

[16]

ZAJĄC M, KULAWIK P, TKACZEWSKA J, et al. The effect of hyaluronic acid addition on the properties of smoked homogenized sausages[J]. Journal of the Science of Food and Agriculture, 2017, 97(8): 2316-2326. DOI:10.1002/jsfa.8041.

[18]

SKIPNES D, JOHNSEN S O, SKÅRA T, et al. Optimization of heat processing of farmed atlantic cod (Gadus morhua) muscle with respect to cook loss, water holding capacity, color, and texture[J]. Journal of Aquatic Food Product Technology, 2011, 20(3): 331-340. DOI:10.1080/10498850.2011.571808.

[19]

LUO H B, GUO C X, LIN L, et al. Combined use of rheology, LFNMR, and MRI for characterizing the gel properties of hairtail surimi with potato starch[J]. Food and Bioprocess Technology, 2020, 13(4): 637-647. DOI:10.1007/s11947-020-02423-y.

[20]

ZHOU Y G, LIU J H, KANG Y, et al. Effects of acid and alkaline treatments on physicochemical and rheological properties of tilapia surimi prepared by pH shift method during cold storage[J]. Food Research International, 2021, 145: 110424. DOI:10.1016/j.foodres.2021.110424.

[21]

YUAN L, YU J M, MU J L, et al. Effects of deacetylation of konjac glucomannan on the physicochemical properties of surimi gels from silver carp (Hypophthalmichthys molitrix)[J]. RSC Advances, 2019, 9(34): 19828-19836. DOI:10.1039/c9ra03517f.

[22]

BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI:10.1016/0003-2697(76)90527-3.

[23]

YU W Y, WANG Z M, PAN Y X, et al. Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product[J]. LWT-Food Science and Technology, 2022, 154: 112279. DOI:10.1016/j.lwt.2021.112279.

[24]

YU N N, GONG H, YUAN H, et al. Effects of calcium chloride as a salt substitute on physicochemical and 3D printing properties of silver carp surimi gels[J]. CyTA-Journal of Food, 2022, 20(1): 1-12. DOI:10.1080/19476337.2021.2008510.

[25]

HAYAKAWA T, YOSHIDA Y, YASUI M, et al. Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine[J]. Meat Science, 2012, 90(1): 77-80. DOI:10.1016/j.meatsci.2011.06.002.

[26]

ZHOU X X, JIANG S, ZHAO D D, et al. Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil[J]. LWT-Food Science and Technology, 2017, 84: 562-571. DOI:10.1016/j.lwt.2017.03.026.

[27]

CHEN J X, DENG T Y, WANG C, et al. Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi[J]. Journal of the Science of Food and Agriculture, 2020, 100(5): 2252-2260. DOI:10.1002/jsfa.10254.

[28]

MI H B, SU Q, CHEN J X, et al. Starch-fatty acid complexes improve the gel properties and enhance the fatty acid content of Nemipterus virgatus surimi under high-temperature treatment[J]. Food Chemistry, 2021, 362: 130253. DOI:10.1016/j.foodchem.2021.130253.

[29]

ALIPOUR H J, REZAEI M, SHABANPOUR B, et al. Effects of sulfated polysaccharides from green alga ulva intestinalis on physicochemical properties and microstructure of silver carp surimi[J]. Food Hydrocolloids, 2018, 74: 87-96. DOI:10.1016/j.foodhyd.2017.07.038.

[30]

JANNAT-ALIPOUR H, REZAEI M, SHABANPOUR B, et al. Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product[J]. Journal of Food Science and Technology, 2019, 56(8): 3777-3789. DOI:10.1007/s13197-019-03846-y.

[31]

ZHANG L L, ZHANG F X, WANG X. Effects of hydrolyzed wheat gluten on the properties of high-temperature (≥ 100 ℃) treated surimi gels[J]. Food Hydrocolloids, 2015, 45: 196-202. DOI:10.1016/j.foodhyd.2014.11.016.

[32]

PETCHARAT T, BENJAKUL S. Effect of gellan incorporation on gel properties of bigeye snapper surimi[J]. Food Hydrocolloids, 2018, 77: 746-753. DOI:10.1016/j.foodhyd.2017.11.016.

[33]

JANNAT-ALIPOUR H, REZAEI M, SHABANPOUR B, et al. Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: chemical composition and physicochemical properties[J]. Journal of Applied Phycology, 2019, 31(4): 2529-2539. DOI:10.1007/s10811-019-1744-y.

[34]

AHMAD M U, TASHIRO Y, MATSUKAWA S, et al. Gelation mechanism of surimi studied by 1H NMR relaxation measurements[J]. Journal of Food Science, 2007, 72(6): E362-E367. DOI:10.1111/j.1750-3841.2007.00411.x.

[35]

LIU Y, SUN Q X, WEI S, et al. LF-NMR as a tool for predicting the 3D printability of surimi-starch systems[J]. Food Chemistry, 2022, 374: 131727. DOI:10.1016/j.foodchem.2021.131727.

[36]

KAEWUDOM P, BENJAKUL S, KIJROONGROJANA K. Properties of surimi gel as influenced by fish gelatin and microbial transglutaminase[J]. Food Bioscience, 2013, 1: 39-47. DOI:10.1016/j.fbio.2013.03.001.

[37]

ZHANG T, LI Z J, WANG Y M, et al. Effects of konjac glucomannan on heat-induced changes of physicochemical and structural properties of surimi gels[J]. Food Research International, 2016, 83: 152-161. DOI:10.1016/j.foodres.2016.03.007.

[38]

WANG J Q, POTOROKO I, TSIRULNICHENKO L. Wood vinegar and chitosan compound preservative affects on fish balls stability[J]. Food Bioscience, 2021, 42: 101102. DOI:10.1016/j.fbio.2021.101102.

[39]

CHEN H H, FERNG L H, CHEN S D, et al. Combination model for the spatial partition of surimi protein and hydroxyl propyl methyl cellulose[J]. Food Hydrocolloids, 2005, 19(4): 761-768. DOI:10.1016/j.foodhyd.2004.09.008.

[40]

CHEN H H, HUANG Y C. Rheological properties of HPMC enhanced surimi analyzed by small- and large-strain tests–Ⅱ: effect of water content and ingredients[J]. Food Hydrocolloids, 2008, 22(2): 313-322. DOI:10.1016/j.foodhyd.2006.12.006.

[41]

CAO M J, WU L L, HARA K J, et al. Purification and characterization of a myofibril-bound serine proteinase from the skeletal muscle of silver carp[J]. Journal of Food Biochemistry, 2005, 29(5): 533-546. DOI:10.1111/j.1745-4514.2005.00018.x.

[43]

ZHANG T, XU X Q, JI L, et al. Phase behaviors involved in surimi gel system: effects of phase separation on gelation of myofibrillar protein and kappa-carrageenan[J]. Food Research International, 2017, 100: 361-368. DOI:10.1016/j.foodres.2017.07.025.

[44]

KONG W J, ZHANG T, FENG D D, et al. Effects of modified starches on the gel properties of Alaska Pollock surimi subjected to different temperature treatments[J]. Food Hydrocolloids, 2016, 56: 20-28. DOI:10.1016/j.foodhyd.2015.11.023.

[45]

LI T F, ZHAO J X, HUANG J, et al. Improvement of the quality of surimi products with overdrying potato starches[J]. Journal of Food Quality, 2017, 2017: 1417856. DOI:10.1155/2017/1417856.

[46]

DING Y Q, LIU Y M, YANG H, et al. Effects of CaCl2 on chemical interactions and gel properties of surimi gels from two species of carps[J]. European Food Research and Technology, 2011, 233(4): 569-576. DOI:10.1007/s00217-011-1546-1.

[47]

MI J, ZHAO X Z, HUANG P, et al. Effect of hydroxypropyl distarch phosphate on the physicochemical characteristics and structure of shrimp myofibrillar protein[J]. Food Hydrocolloids, 2022, 125: 107417. DOI:10.1016/j.foodhyd.2021.107417.

[48]

ZHOU X X, LIU H H, ZHU S C, et al. Textural, rheological and chemical properties of surimi nutritionally-enhanced with lecithin[J]. LWT-Food Science and Technology, 2020, 122: 108984. DOI:10.1016/j.lwt.2019.108984.

[49]

YANG J Y, XIONG Y L. Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress[J]. Food Chemistry, 2018, 243: 231-238. DOI:10.1016/j.foodchem.2017.09.146.

[50]

BENJAKUL S, VISESSANGUAN W, PHATCHRAT S, et al. Chitosan affects transglutaminase-induced surimi gelation[J]. Journal of Food Biochemistry, 2003, 27(1): 53-66. DOI:10.1111/j.1745-4514.2003.tb00266.x.

[51]

PIAO X Y, LI J W, ZHAO Y D, et al. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: interactions, performance and mechanisms[J]. Food Hydrocolloids, 2022, 133: 107893. DOI:10.1016/j.foodhyd.2022.107893.

[52]

KOBAYASHI Y, MAYER S G, PARK J W. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions[J]. Food Chemistry, 2017, 226: 156-164. DOI:10.1016/j.foodchem.2017.01.068.

[53]

HERRERO A M. Raman spectroscopy for monitoring protein structure in muscle food systems[J]. Critical Reviews in Food Science and Nutrition, 2008, 48(6): 512-523. DOI:10.1080/10408390701537385.

[54]

FENG J, BAI X, LI Y, et al. Improvement on gel properties of myofibrillar protein from chicken patty with potato dietary fiber: based on the change in myofibrillar protein structure and water state[J]. International Journal of Biological Macromolecules, 2023, 230: 123228. DOI:10.1016/j.ijbiomac.2023.123228.

[55]

IGNACIO S G, ARANTXA R C, MERCEDES C, et al. Raman analysis of surimi gelation by addition of wheat dietary fibre[J]. Food Chemistry, 2009, 112(1): 162-168. DOI:10.1016/j.foodchem.2008.05.054.

[56]

SINGH A, BENJAKUL S, PRODPRAN T, et al. Effect of psyllium (Plantago ovata Forks) husk on characteristics, rheological and textural properties of threadfin bream surimi gel[J]. Foods, 2021, 10(6): 1181. DOI:10.3390/foods10061181.

[57]

ALIX A J P, PEDANOU G, BERJOT M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the Raman amide I band[J]. Journal of Molecular Structure, 1988, 174: 159-164. DOI:10.1016/0022-2860(88)80151-0.

[58]

YANG K, ZHOU Y H, GUO J J, et al. Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: a novel study combined with low field NMR and Raman spectroscopy[J]. Food Chemistry, 2020, 326: 126896. DOI:10.1016/j.foodchem.2020.126896.

[59]

YU N N, XU Y S, JIANG Q X, et al. Molecular forces involved in heat-induced freshwater surimi gel: effects of various bond disrupting agents on the gel properties and protein conformation changes[J]. Food Hydrocolloids, 2017, 69: 193-201. DOI:10.1016/j.foodhyd.2017.02.003.

[60]

YANG Y L, MENG L L, WANG Y X, et al. Effects of exogenous lipids on gelling properties of silver carp surimi gel subjected to microwave heating[J]. Food Science & Nutrition, 2022, 10(12): 4296-4307. DOI:10.1002/fsn3.3021.

Food Science
Pages 78-89
Cite this article:
YIN K, LIN D, CHEN Y, et al. Effect of Hyaluronic Acid on Physicochemical and Gel Properties of Surimi from Litopenaeus vannamei. Food Science, 2024, 45(12): 78-89. https://doi.org/10.7506/spkx1002-6630-20230906-049
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return