PDF (2.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Application and Prospect of New Functional Ice in Food Sterilization and Preservation

Yitao LU1 Cuifang TIAN1Qian WU1Jiawen LIU1Jing LIU1Weidan DUAN1Huan XU1Lifa ZHOU2Yingjie PAN1,3,4,5Yong ZHAO1,3,4,5 ()Zhaohuan ZHANG1,3
College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
Shanghai Kangjiu Disinfection Technology Incorporated Company, Shanghai 201506, China
International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, China
Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
Shanghai Engineering Research Centre of Aquatic-Product Processing & Preservation, Shanghai 201306, China
Show Author Information

Abstract

Ice preservation is one of the most extensive methods of food preservation, and improving the ability of ice preservation is a key and difficult problem in the field of food preservation. However, the limited ability of traditional ice to inhibit microbial viability hinders the further development of the food industry. At present, new functional ices such as electrolyzed water ice, ozone ice, plasma activated water ice, bacteriostatic substance added ice, fluidized ice, ultraviolet radiation ice and composite functional ice, which have better preservation effect than traditional ice and therefore have broad prospects for development and application, have found wide applications in the field of food preservation. Research on new functional ice with better sterilization and preservation effect has become a hot spot in the food industry. Therefore, this paper summarizes the preparation, sterilization and preservation mechanism of new functional ice in order to provide a theoretical basis and scientific evidence for further development of new functional ice and to promote the application of new functional ice in food sterilization and preservation.

CLC number: TS201.3 Document code: A Article ID: 1002-6630(2024)14-0267-10

References

[1]

CHANIOTI S, GIANNOGLOU M, STERGIOU P, et al. Coldatmospheric-plasma activated-ice as a cooling medium with antimicrobial properties: case study on fish fillet preservation[J]. Food Research International, 2023, 167: 112639.DOI:10.1016/j.foodres.2023.112639.

[2]

XIANG Q S, FAN L M, LI Y F, et al. A review on recent advances in plasma-activated water for food safety: current applications and future trends[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(8): 2250-2268.DOI:10.1080/10408398.2020.1852173.

[3]

LI L L, ZHANG M, ADHIKARI B, et al. Recent advances in pressure modification-based preservation technologies applied to fresh fruits and vegetables[J]. Food Reviews International, 2017, 33(5): 538-559.DOI:10.1080/87559129.2016.1196492.

[4]

LOPES M L M, MESQUITA V L V, CHIARADIA A C N, et al. High hydrostatic pressure processing of tropical fruits importance for maintenance of the natural food properties[J]. Annals of the New York Academy of Sciences, 2010, 1189(1): 6-15.DOI:10.1111/j.1749-6632.2009.05177.x.

[5]

KOCATEPE D, TURAN H, ALTAN C O, et al. Effect of modified atmosphere packaging on the shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum 1792) mince[J]. Food Science and Technology International, 2016, 22(4): 343-352.DOI:10.1177/1082013215601771.

[6]

LI C H, HAN Y H, FAN S, et al. Effect of three kinds of natural preservative cocktails on vacuum-packed chilled pork[J]. Food Science & Nutrition, 2020, 8(7): 3110-3118.DOI:10.1002/fsn3.1535.

[7]

KATSAROS G, KOSEKI S, DING T, et al. Application of innovative technologies to produce activated safe ice[J]. Current Opinion in Food Science, 2021, 40: 198-203.DOI:10.1016/j.cofs.2021.04.014.

[8]

LIN T, WANG J J, LI J B, et al. Use of acidic electrolyzed water ice for preserving the quality of shrimp[J]. Journal of Agricultural and Food Chemistry, 2013, 61(36): 8695-8702.DOI:10.1021/jf4019933.

[9]

FALCAO J P, DIAS A M G, CORREA E F, et al. Microbiological quality of ice used to refrigerate foods[J]. Food Microbiology, 2002, 19(4): 269-276.DOI:10.1006/fmic.2002.0490.

[10]

BURNETT I A, WEEKS G R, HARRIS D M. A hospital study of ice-making machines: their bacteriology, design, usage and upkeep[J]. Journal of Hospital Infection, 1994, 28(4): 305-313.DOI:10.1016/0195-6701(94)90094-9.

[11]

PEDALINO B, FEELY E, MCKEOWN P, et al. An outbreak of Norwalk-like viral gastroenteritis in holidaymakers travelling to Andorra, January–February 2002[J]. EuroSurveillance, 2003, 8(1): 393.DOI:10.2807/esm.08.01.00393-en.

[12]

GARCÍA R, CARECHE M. Influence of chilling methods on the quality of sardines (Sardina pilchardus)[J]. Journal of Food Protection, 2002, 65(6): 1024-1032.DOI:10.4315/0362-028x-65.6.1024.

[13]

MATSUMOTO K, SAMESHIMA K, TERAOKA Y, et al. Formation of ozone ice by freezing water containing ozone micro-bubbles (investigation into the influence of surfactant on characteristics of ice containing oxygen micro-bubbles)[J]. International Journal of Refrigeration, 2013, 36(3): 842-851.DOI:10.1016/j.ijrefrig.2012.10.030.

[14]

XU Y Y, TIAN Y, MA R N, et al. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus[J]. Food Chemistry, 2016, 197: 436-444.DOI:10.1016/j.foodchem.2015.10.144.

[15]

WANG N, WANG Y R, LI B, et al. Advances in strategies to assure the microbial safety of food-associated ice[J]. Journal of Future Foods, 2023, 3(2): 115-126.DOI:10.1016/j.jfutfo.2022.12.003.

[16]

XUAN X T, FAN Y F, LING J G, et al. Preservation of squid by slightly acidic electrolyzed water ice[J]. Food Control, 2017, 73: 1483-1489.DOI:10.1016/j.foodcont.2016.11.013.

[17]

REBEZOV M, SAEED K, KHALIQ A, et al. Application of electrolyzed water in the food industry: a review[J]. Applied Sciences, 2022, 12(13): 169-176.DOI:10.3390/app12136639.

[18]

ZHAO L, ZHANG Z H, WANG M, et al. New insights into the changes of the proteome and microbiome of shrimp (Litopenaeus vannamei) stored in acidic electrolyzed water ice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(19): 4966-4976.DOI:10.1021/acs.jafc.8b00498.

[19]

CHEN B K, WANG C K. Electrolyzed water and its pharmacological activities: a mini-review[J]. Molecules, 2022, 27(4): 1222.DOI:10.3390/molecules27041222.

[20]

HRICOVA D, STEPHAN R, ZWEIFEL C. Electrolyzed water and its application in the food industry[J]. Journal of Food Protection, 2008, 71(9): 1934-1947.DOI:10.4315/0362-028X-71.9.1934.

[22]

WANG J J, LIN T, LI J B, et al. Effect of acidic electrolyzed water ice on quality of shrimp in dark condition[J]. Food Control, 2014, 35(1): 207-212.DOI:10.1016/j.foodcont.2013.07.005.

[23]

KOSEKI S, ISOBE S, ITOH K. Efficacy of acidic electrolyzed water ice for pathogen control on lettuce[J]. Journal of Food Protection, 2004, 67(11): 2544-2549.DOI:10.6090/jarq.41.273.

[24]

KIM W T, LIM Y S, SHIN I S, et al. Use of electrolyzed water ice for preserving freshness of pacific saury (Cololabis saira)[J]. Journal of Food Protection, 2006, 69(9): 2199-2204.DOI:10.4315/0362-028X-69.9.2199.

[26]

JUNG S, KO B S, JANG H J, et al. Effects of slightly acidic electrolyzed water ice and grapefruit seed extract ice on shelf life of brown sole (Pleuronectes herzensteini)[J]. Food Science and Biotechnology, 2018, 27(1): 261-267.DOI:10.1007/s10068-017-0198-8.

[27]

OKPALA C O R. Investigation of quality attributes of ice-stored Pacific white shrimp (Litopenaeus vannamei) as affected by sequential minimal ozone treatment[J]. LWT-Food Science and Technology, 2014, 57(2): 538-547.DOI:10.1016/j.lwt.2014.02.007.

[28]

NAJAFI M B H, KHODAPARAST M H H. Efficacy of ozone to reduce microbial populations in date fruits[J]. Food Control, 2008, 20(1): 27-30.DOI:10.1016/j.foodcont.2008.01.010.

[29]

MATSUMOTO K, FURUYA K, ZHANG S Y, et al. Investigation on concentration characteristics of ozone micro-bubbles fixed in ice and ozone gas released from ice[J]. International Journal of Refrigeration, 2015, 53: 13-19.DOI:10.1016/j.ijrefrig.2015.01.002.

[30]

BLOGOSLAWSKI W J, STEWART M E. Some ozone applications in seafood[J]. Ozone: Science & Engineering, 2011, 33(5): 368-373.DOI:10.1080/01919512.2011.602006.

[31]

BRODOWSKA A J, NOWAK A, ŚMIGIELSKI K. Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview[J]. Critical Reviews in Food Science and Nutrition, 2017, 58(13): 2176-2201.DOI:10.1080/10408398.2017.1308313.

[32]

PARK H S, HWANG T M, KANG J W, et al. Characterization of raw water for the ozone application measuring ozone consumption rate[J]. Journal of Korean Society of Environmental Engineers, 2001, 23(7): 3515.DOI:10.1016/S0043-1354(00)00564-9.

[33]

MATSUMOTO K, ZHANG S Y, SEKINE K, et al. Investigation on influence of dimensions of ice containing ozone micro-bubbles on characteristics of ozone concentration[J]. International Journal of Refrigeration, 2016, 66: 41-49.DOI:10.1016/j.ijrefrig.2016.02.017.

[34]

GONÇALVES A A. Ozone: an emerging technology for the seafood industry[J]. Brazilian Archives of Biology and Technology, 2009, 52(6): 1527-1539.DOI:10.1590/S1516-89132009000600025.

[36]

CLAUS H. Ozone generation by ultraviolet lamps[J]. Photochemistry and Photobiology, 2021, 97(3): 471-476.DOI:10.1111/php.13391.

[39]

YEHIA A, MIZUNO A. Expectation of ozone generation in alternating current corona discharges[J]. Physics of Plasmas, 2012, 19(3): 033513.DOI:10.1063/1.3695390.

[50]

CAMPOS C A, RODRÍGUEZ Ó, LOSADA V, et al. Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus)[J]. International Journal of Food Microbiology, 2004, 103(2): 121-130.DOI:10.1016/j.ijfoodmicro.2004.11.039.

[51]

ZHAO Y N, LAN W Q, SHEN J L, et al. Combining ozone and slurry ice treatment to prolong the shelf-life and quality of large yellow croaker (Pseudosciaena crocea)[J]. LWT-Food Science and Technology, 2022, 154: 112615.DOI:10.1016/j.lwt.2021.112615.

[52]

GONCALVES A A, SANTOS T C L. Improving quality and shelflife of whole chilled pacific white shrimp (Litopenaeus vannamei) by ozone technology combined with modified atmosphere packaging[J]. LWT-Food Science and Technology, 2019, 99: 568-575.DOI:10.1016/j.lwt.2018.09.083.

[55]

CHEN J, HUANG J, DENG S G, et al. Combining ozone and slurry ice to maximize shelf-life and quality of bighead croaker (Collichthys niveatus)[J]. Journal of Food Science and Technology, 2016, 53(10): 3651-3660.DOI:10.1007/s13197-016-2331-8.

[57]

HOWARD K, HENNEKE F, CHALWIN-MILTON O J B, et al. Plasma activated water offers food security opportunities by increasing shelf life of freshwater fisheries products in South Africa[J]. Food Security, 2023, 15(3): 839-853.DOI:10.1007/s12571-022-01334-4.

[58]

LI Y Q, NIE L L, LIU D W, et al. Plasma-activated chemical solutions and their bactericidal effects[J]. Plasma Processes and Polymers, 2022, 19(11): e2100248.DOI:10.1002/ppap.202100248.

[59]

KANG C D, XIANG Q S, ZHAO D B, et al. Inactivation of pseudomonas deceptionensis CM2 on chicken breasts using plasmaactivated water[J]. Journal of Food Science and Technology, 2019, 56(11): 4938-4945.DOI:10.1007/s13197-019-03964-7.

[61]

HERIANTO S, SHIH M K, LIN C M, et al. The effects of glazing with plasma-activated water generated by a piezoelectric direct discharge plasma system on white leg shrimp (Litopenaeus vannamei)[J]. LWTFood Science and Technology, 2022, 154: 112547.DOI:10.1016/j.lwt.2021.112547.

[62]

KONCHEKOV E M, GLINUSHKIN A P, KALINITCHENKO V P, et al. Properties and use of water activated by plasma of piezoelectric direct discharge[J]. Frontiers in Physics, 2021, 8: 616385.DOI:10.3389/fphy.2020.616385.

[63]

LIAO X Y, SU Y, LIU D H, et al. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis)[J]. Food Control, 2018, 94: 307-314.DOI:10.1016/j.foodcont.2018.07.026.

[65]

HUANG Y M, CHANG W C, HSU C L. Inactivation of norovirus by atmospheric pressure plasma jet on salmon sashimi[J]. Food Research International, 2021, 141: 110108.DOI:10.1016/j.foodres.2021.110108.

[67]

GAO Y W, FRANCIS K, ZHANG X H. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture[J]. Food Research International, 2022, 157: 111246.DOI:10.1016/j.foodres.2022.111246.

[69]

MA R N, WANG G M, TIAN Y, et al. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce[J]. Journal of Hazardous Materials, 2015, 300: 643-651.DOI:10.1016/j.jhazmat.2015.07.061.

[70]

ZHOU R W, ZHOU R S, PRASAD K, et al. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite[J]. Green Chemistry, 2018, 20(23): 5276-5284.DOI:10.1039/c8gc02800a.

[71]

JOSHI I, SALVI D, SCHAFFNER D W, et al. Characterization of microbial inactivation using plasma-activated water and plasmaactivated acidified buffer[J]. Journal of Food Protection, 2018, 81(9): 1472-1480.DOI:10.4315/0362-028X.JFP-17-487.

[72]

QI Z H, TIAN E Q, SONG Y, et al. Inactivation of shewanella putrefaciens by plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2018, 38(5): 1035-1050.DOI:10.1007/s11090-018-9911-5.

[73]

ESUA O J, CHENG J H, SUN D W. Functionalization of water as a nonthermal approach for ensuring safety and quality of meat and seafood products[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(3): 431-449.DOI:10.1080/10408398.2020.1735297.

[74]

ROYINTARAT T, CHOI E H, BOONYAWAN D, et al. Chemicalfree and synergistic interaction of ultrasound combined with plasmaactivated water (PAW) to enhance microbial inactivation in chicken meat and skin[J]. Scientific Reports, 2020, 10(1): 1559.DOI:10.1038/s41598-020-58199-w.

[75]

ZHANG Q, LIANG Y D, FENG H Q, et al. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage[J]. Applied Physics Letters, 2013, 102(20): 203701.DOI:10.1063/1.4807133.

[77]

BENSID A, UCAR Y, BENDEDDOUCHE B, et al. Effect of the icing with thyme, oregano and clove extracts on quality parameters of gutted and beheaded anchovy (Engraulis encrasicholus) during chilled storage[J]. Food Chemistry, 2014, 145: 681-686.DOI:10.1016/j.foodchem.2013.08.106.

[80]

KATARIA J, GARNER L J, MONU E A, et al. Investigating the effects of functional ice (FICE) on Salmonella-food safety, microbial spoilage and quality of raw poultry thigh meat during refrigerated storage[J]. PLoS ONE, 2020, 15(6): e0234781.DOI:10.1371/journal.pone.0234781.

[81]

TAVAKOLI S, NASERI M, ABEDI E, et al. Shelf-life enhancement of whole rainbow trout (Oncorhynchus mykiss) treated with Reshgak ice coverage[J]. Food Science & Nutrition, 2018, 6(4): 953-961.DOI:10.1002/fsn3.636.

[82]

ÖZYURT G, KULEY E, BALIKÇI E, et al. Effect of the icing with rosemary extract on the oxidative stability and biogenic amine formation in sardine (Sardinella aurita) during chilled storage[J]. Food and Bioprocess Technology, 2012, 5(7): 2777-2786.DOI:10.1007/s11947-011-0586-7.

[83]

LEE R M, HARTMAN P A, STAHR H M, et al. Antibacterial mechanism of long-chain polyphosphates in Staphylococcus aureus[J]. Journal of Food Protection, 1994, 57(4): 289-294.DOI:10.4315/0362-028X-57.4.289.

[84]

WILLIAMS S K, RODRICK G E, WEST R L. Sodium lactate affects shelf life and consumer acceptance of fresh catfish (Icfalurus nebulosus, marmoratus) fillets under simulated retail conditions[J]. Journal of Food Science, 1995, 60(3): 636-639.DOI:10.1111/j.1365-2621.1995.tb09845.x.

[85]

KAUFFELD M, GUND S. Ice slurry: history, current technologies and future developments[J]. International Journal of Refrigeration, 2019, 99: 264-271.DOI:10.1016/j.ijrefrig.2019.01.010.

[87]

RODRÍGUEZ Ó, BARROS-VELÁZQUEZ J, PIÑEIRO C, et al. Effects of storage in slurry ice on the microbial, chemical and sensory quality and on the shelf life of farmed turbot (Psetta maxima)[J]. Food Chemistry, 2004, 95(2): 270-278.DOI:10.1016/j.foodchem.2004.11.054.

[88]

LYU F, ZHU R R, TANG W, et al. Progress of ice slurry in food industry: application, production, heat and mass transfer[J]. International Journal of Food Science & Technology, 2022, 57(2): 842-855.DOI:10.1111/ijfs.15493.

[90]

SAMAH W, CLAIN P, RIOUAL F, et al. Review on ice crystallization and adhesion to optimize ice slurry generators without moving components[J]. Applied Thermal Engineering, 2023, 223: 119974.DOI:10.1016/j.applthermaleng.2023.119974.

[91]

KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505.DOI:10.1016/j.ijrefrig.2010.07.018.

[94]

STAMATIOU E, MEEWISSE J W, KAWAJI M. Ice slurry generation involving moving parts[J]. International Journal of Refrigeration, 2004, 28(1): 60-72.DOI:10.1016/j.ijrefrig.2004.07.016.

[97]

BÉDÉCARRATS J P, DAVID T, CASTAING-LASVIGNOTTES J. Ice slurry production using supercooling phenomenon[J]. International Journal of Refrigeration, 2009, 33(1): 196-204.DOI:10.1016/j.ijrefrig.2009.08.012.

[98]

PRONK P, MEEWISSE J W, INFANTE FERREIRA C A I. Validation of the use of heat transfer models in liquid/solid fluidized beds for ice slurry generation[J]. International Journal of Heat and Mass Transfer, 2005, 48(16): 3478-3483.DOI:10.1016/j.ijheatmasstransfer.2005.01.045.

[99]

WIJEYSUNDERA N E, HAWLADER M N A, ANDY C W B, et al. Ice-slurry production using direct contact heat transfer[J]. International Journal of Refrigeration, 2004, 27(5): 511-519.DOI:10.1016/j.ijrefrig.2004.03.007.

[100]

ZOU L G, ZHANG X L, ZHENG Q Y. Research progress on preparation of binary ice by vacuum flash evaporation: a review[J]. International Journal of Refrigeration, 2020, 121: 72-85.DOI:10.1016/j.ijrefrig.2020.10.005.

[102]

ANNAMALAI J, LAKSHMI N M, SIVAM V, et al. A comparative study on the quality changes of croaker (Johnius dussumieri) fish stored in slurry ice and flake ice[J]. Journal of Aquatic Food Product Technology, 2018, 27(4): 508-517.DOI:10.1080/10498850.2018.1449152.

[103]

MÚGICA B, BARROS-VELÁZQUEZ J, MIRANDA J M, et al. Evaluation of a slurry ice system for the commercialization of ray (Raja clavata): effects on spoilage mechanisms directly affecting quality loss and shelf-life[J]. LWT-Food Science and Technology, 2007, 41(6): 974-981.DOI:10.1016/j.lwt.2007.06.017.

[104]

TSUNO M, THUNGCHAI M, BHANTHUMKOSOL D, et al. Bacteriological survey of water and ice for general uses in Thailand[J]. Food Microbiology, 1984, 1(2): 123-128.DOI:10.1016/0740-0020(84)90022-4.

[105]

MURASHITA S, KAWAMURA S, KOSEKI S. Inactivation of nonpathogenic Escherichia coli, Escherichia coli O157: H7, Salmonella enterica Typhimurium, and Listeria monocytogenes in ice using a UVC light-emitting diode[J]. Journal of Food Protection, 2017, 80(7): 1198-1203.DOI:10.4315/0362-028X.JFP-17-036.

[106]
HICHEM H, SONI M P, THOMAS B, et al. The case for LEDUVC as a primary disinfectant for small sustainable drinking water systems[C]// MATEC Web of Conferences. EDP Sciences, 2019, 280: 05014.DOI:10.1051/matecconf/201928005014.
[107]

SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water Research, 2016, 94: 341-349.DOI:10.1016/j.watres.2016.03.003.

[108]
KOUTCHMA T, POPOVIĆ V, GREEN A. Overview of ultraviolet (UV) LEDs technology for applications in food production[M]//KOUTCHMA T. Ultraviolet LED technology for food Applications: from farms to kitchens. New York: Academic Press, 2019: 1-23.
[109]

WÜRTELE M A, KOLBE T, LIPSZ M, et al. Application of GaNbased ultraviolet-C light emitting diodes-UV LEDs-for water disinfection[J]. Water Research, 2011, 45(3): 1481-1489.DOI:10.1016/j.watres.2010.11.015.

[110]

DAI T H, VRAHAS M S, MURRAY C K, et al. Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections?[J]. Expert Review of Anti-infective Therapy, 2012, 10(2): 185-195.DOI:10.1586/ERI.11.166.

[111]

LADANYI P A, MORRISON S M. Ultraviolet bactericidal irradiation of ice[J]. Applied Microbiology, 1968, 16(3): 463-467.DOI:10.1128/AEM.16.3.463-467.1968.

[112]

GUAN Z W, LIU P, ZHOU T F, et al. Study on the light field regulation of UVC-LED disinfection for cold chain transportation[J]. Applied Sciences, 2022, 12(3): 1285.DOI:10.3390/app12031285.

[113]

HINDS L M, O’DONNELL C P, AKHTER M, et al. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications[J]. Innovative Food Science and Emerging Technologies, 2019, 56(C): 102153.DOI:10.1016/j.ifset.2019.04.006.

[114]

FAN X T, GEVEKE D J. Furan formation in sugar solution and apple cider upon ultraviolet treatment[J]. Journal of Agricultural and Food Chemistry, 2007, 55(19): 7816-7821.DOI:10.1021/jf071366z.

[115]

AUBOURG S P, LOSADA V, PRADO M, et al. Improvement of the commercial quality of chilled Norway lobster (Nephrops norvegicus) stored in slurry ice: effects of a preliminary treatment with an antimelanosic agent on enzymatic browning[J]. Food Chemistry, 2006, 103(3): 741-748.DOI:10.1016/j.foodchem.2006.09.022.

[117]

BONO G, OKPALA C O R, VITALE S, et al. Effects of different ozonized slurry-ice treatments and superchilling storage (–1 ℃) on microbial spoilage of two important pelagic fish species[J]. Food Science & Nutrition, 2017, 5(6): 1049-1056.DOI:10.1002/fsn3.486.

[119]

LAN W Q, CHEN X N, ZHAO Y N, et al. The effects of tea polyphenol-ozonated slurry ice treatment on the quality of large yellow croaker (Pseudosciaena crocea) during chilled storage[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 7052-7061.DOI:10.1002/jsfa.12066.

[120]

PECHACEK N, OSORIO M, CAUDILL J, et al. Evaluation of the toxicity data for peracetic acid in deriving occupational exposure limits: a minireview[J]. Toxicology Letters, 2015, 233(1): 45-57.DOI:10.1016/j.toxlet.2014.12.014.

Food Science
Pages 267-276
Cite this article:
LU Y, TIAN C, WU Q, et al. Application and Prospect of New Functional Ice in Food Sterilization and Preservation. Food Science, 2024, 45(14): 267-276. https://doi.org/10.7506/spkx1002-6630-20230910-071
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return