China is the world’s largest walnut producer, with an annual output of 4.7959 million tons. Walnut kernels have high nutritional value, containing 65%−69% of oil and 15%−20% of protein. Walnut meal, an abundant byproduct of walnut oil production, is mainly used in animal feed and fertilizers with low processing efficiency, whose potential for high-value utilization is far from being excavated. Studies have found that walnut meal contains a large amount of protein (42%−54%), its amino acid composition is rich, and the proportion of amino acids in walnut meal is suitable for human absorption. Walnut meal is a source of high-quality plant protein with a true protein digestibility score of 86.22%, and a biological valence of 98.77%. Therefore, high-efficiency utilization of walnut meal proteins is an important pathway for the high-value utilization of walnut meal. In this article, the composition, structure, and nutritional value of walnut proteins are reviewed. The extraction methods and functional characteristics of walnut proteins are summarized. The effect of modification on their functionalities and digestibility is also summarized. Finally, the application potential of walnut protein in foods is discussed.
KUMAR M, TOMAR M, POTKULE J, et al. Advances in the plant protein extraction: mechanism and recommendations[J]. Food Hydrocolloids, 2021, 115: 106595. DOI:10.1016/j.foodhyd.2021.106595.
ISMAIL B P, SENARATNE-LENAGALA L, STUBE A, et al. Protein demand: review of plant and animal proteins used in alternative protein product development and production[J]. Animal Frontiers, 2020, 10(4): 53-63. DOI:10.1093/af/vfaa040.
KIM S W, LESS J F, WANG L, et al. Meeting global feed protein demand: challenge, opportunity, and strategy[J]. Annual Review of Animal Biosciences, 2019, 7: 221-243. DOI:10.1146/annurev-animal-030117-014838.
GUÉGUEN J, WALRAND S, BOURGEOIS O. Les protéines végétales: contexte et potentiels en alimentation humaine[J]. Cahiers de Nutrition et de Diététique, 2016, 51(4): 177-185. DOI:10.1016/j.cnd.2016.02.001.
HERTZLER S R, LIEBLEIN-BOFF J C, WEILER M, et al. Plant proteins: assessing their nutritional quality and effects on health and physical function[J]. Nutrients, 2020, 12(12): 3704. DOI:10.3390/nu12123704.
GAO Z L, SHEN P Y, LAN Y, et al. Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate[J]. Food Research International, 2020, 131: 109045. DOI:10.1016/j.foodres.2020.109045.
NASAR A K. Screening and evaluation of exotic and indigenous walnut genotype and varieties[J]. Agricultural Research & Technology: Open Access Journal, 2017, 7(2): 555709. DOI:10.19080/artoaj.2017.07.555709.
HAYES D, ANGOVE M J, TUCCI J, et al. Walnuts (Juglans regia) chemical composition and research in human health[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(8): 1231-1241. DOI:10.1080/10408398.2012.760516.
SUN Q, MA Z F, ZHANG H X, et al. Structural characteristics and functional properties of walnut glutelin as hydrolyzed: effect of enzymatic modification[J]. International Journal of Food Properties, 2019, 22(1): 265-279. DOI:10.1080/10942912.2019.1579738.
YAN C J, ZHOU Z. Solubility and emulsifying properties of phosphorylated walnut protein isolate extracted by sodium trimetaphosphate[J]. LWT-Food Science and Technology, 2021, 143: 111117. DOI:10.1016/j.lwt.2021.111117.
LACKEY K A, FLEMING S A. Brief research report: estimation of the protein digestibility-corrected amino acid score of defatted walnuts[J]. Frontiers in Nutrition, 2021, 8: 702857. DOI:10.3389/fnut.2021.702857.
MAO X Y, HUA Y F, CHEN G G. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations[J]. International Journal of Molecular Sciences, 2014, 15(2): 2003-2014. DOI:10.3390/ijms15022003.
SHI A M, JIAO B, LIU H Z, et al. Effects of proteolysis and transglutaminase crosslinking on physicochemical characteristics of walnut protein isolate[J]. LWT-Food Science and Technology, 2018, 97: 662-667. DOI:10.1016/j.lwt.2018.07.043.
ARRUTIA F, BINNER E, WILLIAMS P, et al. Oilseeds beyond oil: press cakes and meals supplying global protein requirements[J]. Trends in Food Science & Technology, 2020, 100: 88-102. DOI:10.1016/j.tifs.2020.03.044.
SZE-TAO K W C, SATHE S K. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility[J]. Journal of the Science of Food and Agriculture, 2000, 80(9): 1393-1401. DOI:10.1002/1097-0010(200007)80:91393:aid-jsfa653>3.0.co;2-f.
QIN P X, WANG T R, LUO Y C. A review on plant-based proteins from soybean: health benefits and soy product development[J]. Journal of Agriculture and Food Research, 2022, 7: 100265. DOI:10.1016/j.jafr.2021.100265.
LIU D D, GUO Y T, ZHU J S, et al. The necessity of enzymatically hydrolyzing walnut protein to exert antihypertensive activity based on in vitro simulated digestion and in vivo verification[J]. Food & Function, 2021, 12(8): 3647-3656. DOI:10.1039/d1fo00427a.
EMMERT J L, BAKER D H. Protein quality assessment of soy products[J]. Nutrition Research, 1995, 15(11): 1647-1656. DOI:10.1016/0271-5317(95)02035-5.
HARAGUCHI F K, PEDROSA M L, DE PAULA H, et al. Evaluation of biological and biochemical quality of whey protein[J]. Journal of Medicinal Food, 2010, 13(6): 1505-1509. DOI:10.1089/jmf.2009.0222.
MAO X Y, HUA Y F. Chemical composition, molecular weight distribution, secondary structure and effect of NaCl on functional properties of walnut (Juglans regia L) protein isolates and concentrates[J]. Journal of Food Science and Technology, 2014, 51(8): 1473-1482. DOI:10.1007/s13197-012-0674-3.
LV S Y, TAHA A, HU H, et al. Effects of ultrasonic-assisted extraction on the physicochemical properties of different walnut proteins[J]. Molecules, 2019, 24(23): 4260. DOI:10.3390/molecules24234260.
GOULA A M. Ultrasound-assisted extraction of pomegranate seed oil-kinetic modeling[J]. Journal of Food Engineering, 2013, 117(4): 492-498. DOI:10.1016/j.jfoodeng.2012.10.009.
CHEW K W, CHIA S R, LEE S Y, et al. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique[J]. Chemical Engineering Journal, 2019, 367: 1-8. DOI:10.1016/j.cej.2019.02.131.
SHIRSATH S R, SONAWANE S H, GOGATE P R. Intensification of extraction of natural products using ultrasonic irradiations: a review of current status[J]. Chemical Engineering and Processing: Process Intensification, 2012, 53: 10-23. DOI:10.1016/j.cep.2012.01.003.
MAT YUSOFF M, GORDON M H, EZEH O, et al. Aqueous enzymatic extraction of Moringa oleifera oil[J]. Food Chemistry, 2016, 211: 400-408. DOI:10.1016/j.foodchem.2016.05.050.
DE FIGUEIREDO V R G, YAMASHITA F, VANZELA A L L, et al. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara[J]. Journal of Food Science and Technology, 2018, 55(4): 1508-1517. DOI:10.1007/s13197-018-3067-4.
HU H F, SUN Y L, ZHAO X Y, et al. Functional and conformational characterisation of walnut protein obtained through AOT reverse micelles[J]. International Journal of Food Science & Technology, 2015, 50(11): 2351-2359. DOI:10.1111/ijfs.12900.
MOHD-SETAPAR S H, MOHAMAD-AZIZ S N, CHUONG C S, et al. A review of mixed reverse micelle system for antibiotic recovery[J]. Chemical Engineering Communications, 2014, 201(12): 1664-1685. DOI:10.1080/00986445.2013.819799.
YIN S W, TANG C H, WEN Q B, et al. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment[J]. Food Chemistry, 2008, 110(4): 938-945. DOI:10.1016/j.foodchem.2008.02.090.
MAO X Y, HUA Y F. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.)[J]. International Journal of Molecular Sciences, 2012, 13(2): 1561-1581. DOI:10.3390/ijms13021561.
KONG X Z, ZHANG L N, LU X, et al. Effect of high-speed shearing treatment on dehulled walnut proteins[J]. LWT-Food Science and Technology, 2019, 116: 108500. DOI:10.1016/j.lwt.2019.108500.
HU H F, FAN T, ZHAO X Y, et al. Influence of pH and salt concentration on functional properties of walnut protein from different extraction methods[J]. Journal of Food Science and Technology, 2017, 54(9): 2833-2841. DOI:10.1007/s13197-017-2721-6.
WANG Y X, TAN B, CHEN C, et al. The phenolic profile of walnut meal protein isolate and interaction of phenolics with walnut protein[J]. Food Research International, 2023, 170: 113042. DOI:10.1016/j.foodres.2023.113042.
PEI S P, WANG Y, ZHANG Y, et al. Structural and textural properties of walnut protein gels induced by ultrasound and transglutaminase: encapsulation and release of tea polyphenols[J]. Journal of Food Science and Technology, 2023, 60(8): 2286-2295. DOI:10.1007/s13197-023-05756-6.
ZHU Z B, ZHU W D, YI J H, et al. Effects of sonication on the physicochemical and functional properties of walnut protein isolate[J]. Food Research International, 2018, 106: 853-861. DOI:10.1016/j.foodres.2018.01.060.
SHI L S, YANG X Y, GONG T, et al. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure[J]. LWT-Food Science and Technology, 2023, 173: 114269. DOI:10.1016/j.lwt.2022.114269.
PUPPO C, CHAPLEAU N, SPERONI F, et al. Physicochemical modifications of high-pressure-treated soybean protein isolates[J]. Journal of Agricultural and Food Chemistry, 2004, 52(6): 1564-1571. DOI:10.1021/jf034813t.
MESSENS W, VAN CAMP J, HUYGHEBAERT A. The use of high pressure to modify the functionality of food proteins[J]. Trends in Food Science & Technology, 1997, 8(4): 107-112. DOI:10.1016/S0924-2244(97)01015-7.
QIN Z H, GUO X F, LIN Y, et al. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate[J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1105-1111. DOI:10.1002/jsfa.5857.
ZHAO Y, SUN N, LI Y, et al. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour[J]. Food Research International, 2017, 100: 850-857. DOI:10.1016/j.foodres.2017.08.004.
MAO X Y, WANG D D, SUN L G, et al. Effect of peroxyl-radicals-induced oxidative modification in the physicochemical and emulsifying properties of walnut protein[J]. Journal of the American Oil Chemists’Society, 2021, 98(9): 903-910. DOI:10.1002/aocs.12367.
SUN L G, WU Q Z, MAO X Y. Effects of oxidation modification by malondialdehyde on the structure and functional properties of walnut protein[J]. Foods, 2022, 11(16): 2432. DOI:10.3390/foods11162432.
ZHANG X C, YANG X, LI Y Q, et al. Effect of peroxyl radical-induced oxidation on functional and structural characteristics of walnut protein isolates revealed by high-resolution mass spectrometry[J]. Foods, 2022, 11(3): 385. DOI:10.3390/foods11030385.
ZHAO J J, HAN M M, WU Q Z, et al. Effect of oxidative modification by peroxyl radical on the characterization and identification of oxidative aggregates and in vitro digestion products of walnut (Juglans regia L.) protein isolates[J]. Foods, 2022, 11(24): 4104. DOI:10.3390/foods11244104.
FOEGEDING E A, DAVIS J P. Food protein functionality: a comprehensive approach[J]. Food Hydrocolloids, 2011, 25(8): 1853-1864. DOI:10.1016/j.foodhyd.2011.05.008.
JIN F, WANG Y P, TANG H K, et al. Limited hydrolysis of dehulled walnut (Juglans regia L.) proteins using trypsin: functional properties and structural characteristics[J]. LWT-Food Science and Technology, 2020, 133: 110035. DOI:10.1016/j.lwt.2020.110035.
LI T L, WU C Y, LIAO J Q, et al. Application of protein hydrolysates from defatted walnut meal in high-gravity brewing to improve fermentation performance of lager yeast[J]. Applied Biochemistry and Biotechnology, 2020, 190(2): 360-372. DOI:10.1007/s12010-019-03109-8.
WEN C T, ZHANG Z Y, CAO L Y, et al. Walnut protein: a rising source of high-quality protein and its updated comprehensive review[J]. Journal of Agricultural and Food Chemistry, 2023, 71(28): 10525-10542. DOI:10.1021/acs.jafc.3c01620.
ZHAO Y X, HE W H, ZHAO S H, et al. Advanced insights into walnut protein: structure, physiochemical properties and applications[J]. Foods, 2023, 12(19): 3603. DOI:10.3390/foods12193603.
GROSSO A L, ASENSIO C M, GROSSO N R, et al. Increase of walnuts’ shelf life using a walnut flour protein-based edible coating[J]. LWT-Food Science and Technology, 2020, 118: 108712. DOI:10.1016/j.lwt.2019.108712.
CAI Y J, DENG X L, LIU T X, et al. Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties[J]. Food Hydrocolloids, 2018, 79: 391-398. DOI:10.1016/j.foodhyd.2018.01.006.
ASADI M, SALAMI M, HAJIKHANI M, et al. Electrospray production of curcumin-walnut protein nanoparticles[J]. Food Biophysics, 2021, 16(1): 15-26. DOI:10.1007/s11483-020-09637-9.