As a common plant that is widely used for both medicinal and culinary purposes, ginger is rich in polysaccharides, terpenes, phenols and other active substances, imparting it with antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective and antidiabetic properties. In this paper, we review the current understanding on the composition and biological activities of ginger extract, discusses the application of ginger in food packaging, and propose future directions for ginger extract research, hoping to arouse people’s attention on ginger and its further application so as to promote the comprehensive utilization of ginger resources.
KIYAMA R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways[J]. The Journal of Nutritional Biochemistry, 2020, 86: 108486. DOI:10.1016/j.jnutbio.2020.108486.
CRICHTON M, DAVIDSON A R, INNERARITY C, et al. Orally consumed ginger and human health: an umbrella review[J]. The American Journal of Clinical Nutrition, 2022, 115(6): 1511-1527. DOI:10.1093/ajcn/nqac035.
KUMAR K M, ASISH G, SABU M, et al. Significance of gingers (Zingiberaceae) in Indian system of medicine-Ayurveda: an overview[J]. Ancient Science of Life, 2013, 32(4): 253-261. DOI:10.4103/0257-7941.131989.
LI H J, LIU Y N, LUO D, et al. Ginger for health care: an overview of systematic reviews[J]. Complementary Therapies in Medicine, 2019, 45: 114-123. DOI:10.1016/j.ctim.2019.06.002.
HU W J, YU A Q, WANG S, et al. Extraction, purification, structural characteristics, biological activities, and applications of the polysaccharides from Zingiber officinale Roscoe. (ginger): a review[J]. Molecules, 2023, 28(9): 3855. DOI:10.3390/molecules28093855.
NILE S H, PARK S W. Chromatographic analysis, antioxidant, antiinflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds[J]. Industrial Crops and Products, 2015, 70: 238-244. DOI:10.1016/j.indcrop.2015.03.033.
VIJENDRA KUMAR N, MURTHY P S, MANJUNATHA J R, et al. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives[J]. Food Chemistry, 2014, 159: 451-457. DOI:10.1016/j.foodchem.2014.03.039.
ZHANG M Z, VIENNOIS E, PRASAD M, et al. Edible gingerderived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer[J]. Biomaterials, 2016, 101: 321-340. DOI:10.1016/j.biomaterials.2016.06.018.
CITRONBERG J, BOSTICK R, AHEARN T, et al. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial[J]. Cancer Prevention Research, 2013, 6(4): 271-281. DOI:10.1158/1940-6207.CAPR-12-0327.
WEI C K, TSAI Y, KORINEK M, et al. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice[J]. International Journal of Molecular Sciences, 2017, 18(1): 168. DOI:10.3390/ijms18010168.
LEE J Y, GARCIA C V, SHIN G H, et al. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions[J]. LWTFood Science and Technology, 2019, 106: 164-171. DOI:10.1016/j.lwt.2019.02.061.
FASIHI H, NOSHIRVANI N, HASHEMI M. Novel bioactive films integrated with Pickering emulsion of ginger essential oil for food packaging application[J]. Food Bioscience, 2023, 51: 102269. DOI:10.1016/j.fbio.2022.102269.
JING Y S, CHENG W J, MA Y F, et al. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Zingiber officinale and its application in synthesis of silver nanoparticles[J]. Frontiers in Nutrition, 2022, 9: 917094. DOI:10.3389/fnut.2022.917094.
LIAO D W, CHENG C, LIU J P, et al. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods[J]. International Journal of Biological Macromolecules, 2020, 152: 894-903. DOI:10.1016/j.ijbiomac.2020.02.325.
HU H M, HU M H, WANG D H, et al. Mixed polysaccharides derived from shiitake mushroom, poriacocos, ginger, and tangerine peel enhanced protective immune responses in mice induced by inactivated influenza vaccine[J]. Biomedicine and Pharmacotherapy, 2020, 126: 110049. DOI:10.1016/j.biopha.2020.110049.
CARVALHO G C N, LIRA-NETO J C G, ARAÚJO M F M, et al. Effectiveness of ginger in reducing metabolic levels in people with diabetes: a randomized clinical trial[J]. Revista Latino-Americana de Enfermagem, 2020, 28: e3369. DOI:10.1590/1518-8345.3870.3369.
LIU J P, WANG J, ZHOU S X, et al. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice[J]. International Journal of Biological Macromolecules, 2022, 223: 1308-1319. DOI:10.1016/j.ijbiomac.2022.11.104.
CHEN X H, CHEN G J, WANG Z R, et al. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: preparation, structure characteristics, and biological activities[J]. International Journal of Biological Macromolecules, 2020, 151: 635-649. DOI:10.1016/j.ijbiomac.2020.02.222.
CHEN G T, YUAN B, WANG H X, et al. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes[J]. International Journal of Biological Macromolecules, 2019, 139: 801-809. DOI:10.1016/j.ijbiomac.2019.08.048.
WANG Y, WEI X L, WANG F H, et al. Structural characterization and antioxidant activity of polysaccharide from ginger[J]. International Journal of Biological Macromolecules, 2018, 111: 862-869. DOI:10.1016/j.ijbiomac.2018.01.087.
ALI B H, BLUNDEN G, TANIRA M O, et al. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research[J]. Food and Chemical Toxicology, 2008, 46(2): 409-420. DOI:10.1016/j.fct.2007.09.085.
JUERGENS U. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases[J]. Drug Research, 2014, 64(12): 638-646. DOI:10.1055/s-0034-1372609.
SEOL G, KIM K. Eucalyptol and its role in chronic diseases[J]. Advances in Experimental Medicine and Biology, 2016, 929: 389-398. DOI:10.1007/978-3-319-41342-6_18.
STAPPEN I, HOELZL A, RANDJELOVIC O, et al. Influence of essential ginger oil on human psychophysiology after inhalation and dermal application[J]. Natural Product Communications, 2016, 11(10): 1569-1578.
LAI Y, LEE W, LIN Y, et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease[J]. Journal of Agricultural and Food Chemistry, 2016, 64(10): 2062-2071. DOI:10.1021/acs.jafc.5b06159.
MUKHTAR Y, MICHAEL A, XU X, et al. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs[J]. Bioscience Reports, 2018, 38(6): BSR20181253.
SUN J D. D-limonene: safety and clinical applications[J]. Alternative Medicine Review, 2017, 12(3): 259-264.
PEREIRA I, SEVERINO P, SANTOS A C, et al. Linalool bioactive properties and potential applicability in drug delivery systems[J]. Colloids and Surfaces B: Biointerfaces, 2018, 171: 566-578. DOI:10.1016/j.colsurfb.2018.08.001.
ZHAI B T, ZENG Y Y, ZENG Z W, et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy[J]. International Journal of Nanomedicine, 2018, 13: 6279-6296. DOI:10.2147/IJN.S174527.
ZHAI B T, ZHANG N N, HAN X M, et al. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: a review[J]. Biomed and Pharmacother, 2019, 114: 108812. DOI:10.1016/j.biopha.2019.108812.
GEORGE K, ALONSO-GUTIERREZ J, KEASLING J, et al. Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond[J]. Biotechnology of Isoprenoids, 2015, 148: 355-389. DOI:10.1007/10_2014_288.
GIRISA S, SHABNAM B, MONISHA J, et al. Potential of zerumbone as an anti-cancer agent[J]. Molecules, 2019, 24(4): 734. DOI:10.3390/molecules24040734.
KITAYAMA T. Attractive reactivity of a natural product, zerumbone[J]. Bioscience, Biotechnology and Biochemistry, 2011, 75(2): 199-207. DOI:10.1271/bbb.100532.
VARAKUMAR S, UMESH K, SINGHAL R. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning[J]. Food Chemistry, 2017, 216: 27-36. DOI:10.1016/j.foodchem.2016.07.180.
WANG S, ZHANG C, YANG G, et al. Biological properties of 6-gingerol: a brief review[J]. Natural Product Communications, 2014, 9(7): 1027-1030.
JUNG M Y, LEE M K, PARK H J, et al. Heat-induced conversion of gingerols to shogaols in ginger as affected by heat type (dry or moist heat), sample type (fresh or dried), temperature and time[J]. Food Science and Biotechnology, 2017, 27(3): 687-693. DOI:10.1007/s10068-017-0301-1.
OHNISHI M, OHSHITA M, TAMAKI H, et al. Shogaol but not gingerol has a neuroprotective effect on hemorrhagic brain injury: contribution of the α,β-unsaturated carbonyl to heme oxygenase-1 expression[J]. European Journal of Pharmacology, 2019, 842: 33-39. DOI:10.1016/j.ejphar.2018.10.029.
KOU X R, WANG X Q, JI R Y, et al. Occurrence, biological activity and metabolism of 6-shogaol[J]. Food & Function, 2018, 9(3): 1310-1327. DOI:10.1039/c7fo01354j.
SAPKOTA A, PARK S J, CHOI J W. Neuroprotective effects of 6-shogaol and its metabolite, 6-paradol, in a mouse model of multiple sclerosis[J]. Biomolecules and Therapeutics, 2019, 27(2): 152-159. DOI:10.4062/biomolther.2018.089.
JIN G, SUN Y, MINSUN J, et al. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders[J]. Pharmacology and Therapeutics, 2018, 182: 56-69. DOI:10.1016/j.pharmthera.2017.08.010.
AHMAD B, REHMAN M, AMIN I, et al. A review on pharmacological properties of zingerone(4-(4-hydroxy-3-methoxyphenyl)-2-butanone)[J]. The Scientific World Journal, 2015, 2015: 816364. DOI:10.1155/2015/816364.
KOU X, LI X, RAHMAN M R T, et al. Efficient dehydration of 6-gingerol to 6-shogaol catalyzed by an acidic ionic liquid under ultrasound irradiation[J]. Food Chemistry, 2017, 215: 193-199. DOI:10.1016/j.foodchem.2016.07.106.
BANERJEE J, SINGH R, VIJAYARAGHAVAN R, et al. Bioactives from fruit processing wastes: green approaches to valuable chemicals[J]. Food Chemistry, 2017, 225: 10-22. DOI:10.1016/j.foodchem.2016.12.093.
NIRAMON U, SIRINAPA S I, PHENPHICHAR W, et al. Development of edible Thai rice film fortified with ginger extract using microwaveassisted extraction for oral antimicrobial properties[J]. Scientific Reports, 2021, 11(1): 1-10. DOI:10.1038/s41598-021-94430-y.
MD SARIP M S, MORAD N A, MOHAMAD ALI N A, et al. The kinetics of extraction of the medicinal ginger bioactive compounds using hot compressed water[J]. Separation and Purification Technology, 2014, 124: 141-147. DOI:10.1016/j.seppur.2014.01.008.
VALADEZ-CARMONA L, ORTIZ-MORENO A, CEBALLOSREYES G, et al. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds[J]. The Journal of Supercritical Fluids, 2018, 131: 99-105. DOI:10.1016/j.supflu.2017.09.011.
QADIR M I, NAQVI S T Q, MUHAMMAD S A. Curcumin: a polyphenol with molecular targets for cancer control[J]. Asian Pacific Journal of Cancer Prevention, 2016, 17(6): 2735-2739.
KOCAADAM B, ŞANLIER N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(13): 2889-2895. DOI:10.1080/10408398.2015.1077195.
AKBAR M U, REHMAN K, ZIA K M, et al. Critical review on curcumin as a therapeutic agent: from traditional herbal medicine to an ideal therapeutic agent[J]. Critical Reviews in Eukaryotic Gene Expression, 2018, 28(1): 17-24. DOI:10.1615/CritRevEukaryotGeneExpr.2018020088.
SHUKLA Y, SINGH M. Cancer preventive properties of ginger: a brief review[J]. Food and Chemical Toxicology, 2007, 45(5): 683-690. DOI:10.1016/j.fct.2006.11.002.
DE LIMA R M T, DOS REIS A C, DE MENEZES A P M, et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and[6]-gingerol in cancer: a comprehensive review[J]. Phytotherapy Research, 2018, 32(10): 1885-1907. DOI:10.1002/ptr.6134.
MOHD SAHARDI N F N, MAKPOL S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: review of current evidence[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 5054395. DOI:10.1155/2019/5054395.
DUGASANI S, PICHIKA M R, NADARAJAH V D, et al. Comparative antioxidant and anti-inflammatory effects of[6]-gingerol, [8]-gingerol, [10]-gingerol and[6]-shogaol[J]. Journal of Ethnopharmacology, 2010, 127(2): 515-520. DOI:10.1016/j.jep.2009.10.004.
JI K H, FANG L Y, ZHAO H, et al. Ginger oleoresin alleviated γ-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 1480294. DOI:10.1155/2017/1480294.
HOSSEINZADEH A, JUYBARI K B, FATEMI M J, et al. Protective effect of ginger (Zingiber officinale Roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes[J]. Cells Tissues Organs, 2017, 204: 241-250. DOI:10.1159/000479789.
GABR S A, ALGHADIR A H, GHONIEM G A. Biological activities of ginger against cadmium-induced renal toxicity[J]. Saudi Journal of Biological Sciences, 2019, 26(2): 382-389. DOI:10.1016/j.sjbs.2017.08.008.
MOHAMED O I, EL-NAHAS A F, EL-SAYED Y S, ASHRY K M. Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver[J]. Pharmaceutical Biology, 2016, 54(7): 1164-1172. DOI:10.3109/13880209.2015.1057651.
YEH H, CHUANG C, CHEN H, et al. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts[J]. LWT-Food Science and Technology, 2014, 55: 329-334. DOI:10.1016/j.lwt.2013.08.003.
HAN Q H, YUAN Q H, MENG X L, et al. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ[J]. Oncotarget, 2017, 8(26): 42001-42006. DOI:10.18632/oncotarget.16719.
ZHANG M Z, XU C L, LIU D D, et al. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis[J]. Journal of Crohn’s and Colitis, 2018, 12: 217-229. DOI:10.1093/ecco-jcc/jjx115.
SAHA P, KATARKAR A, DAS B, et al. 6-Gingerol inhibits Vibrio cholerae-induced proinflammatory cytokines in intestinal epithelial cells via modulation of NF-κB[J]. Pharmaceutical Biology, 2016, 54(9): 1606-1615. DOI:10.3109/13880209.2015.1110598.
HSIANG C, LO H, HUANG H, et al. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway[J]. Food Chemistry, 2013, 136: 170-177. DOI:10.1016/j.foodchem.2012.07.124.
UENO N, HASEBE T, KANEKO A, et al. TU-100 (Daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: microbe-independent effects involving Akt and Nf-κB suppression[J]. PLoS ONE, 2014, 9(5): e97456. DOI:10.1371/journal.pone.0097456.
TENG Y, REN Y, SAYED M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host and Microbe, 2018, 24(5): 637-652. DOI:10.1016/j.chom.2018.10.001.
ZENG G F, ZHANG Z Y, LU L, et al. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats[J]. Rejuvenation Research, 2013, 16(2): 124-133. DOI:10.1089/rej.2012.1389.
MOON M, KIM H G, CHOI J G, et al. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia[J]. Biochemical and Biophysical Research Communications, 2014, 449(1): 8-13. DOI:10.1016/j.bbrc.2014.04.121.
PARK G, KIM H G, JU M S, et al. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation[J]. Acta Pharmacologica Sinica, 2013, 34(9): 1131-1139. DOI:10.1038/aps.2013.57.
HO S C, CHANG K S, LIN C C. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol[J]. Food Chemistry, 2013, 141(3): 3183-3191. DOI:10.1016/j.foodchem.2013.06.010.
YAO J, GE C P, DUAN D Z, et al. Activation of the phase II enzymes for neuroprotection by ginger active constituent 6-dehydrogingerdione in PC12 cells[J]. Journal of Agricultural and Food Chemistry, 2014, 62(24): 5507-5518. DOI:10.1021/jf405553v.
DEDOV V N, TRAN V H, DUKE C C, et al. Gingerols: a novel class of vanilloid receptor (VR1) agonists[J]. British Journal of Pharmacology, 2002, 137(6): 793-798. DOI:10.1038/sj.bjp.0704925.
CHAKOTIYA A S, TANWAR A, NARULA A, et al. Zingiber officinale: its antibacterial activity on pseudomonas aeruginosa and mode of action evaluated by flow cytometry[J]. Microbial Pathogenesis, 2017, 107: 254-260. DOI:10.1016/j.micpath.2017.03.029.
HASAN S, DANISHUDDIN M, KHAN A U. Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies[J]. BMC Microbiology, 2015, 15(1): 1. DOI:10.1186/s12866-014-0320-5.
WANG X, SHEN Y, THAKUR K, et al. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus[J]. Molecules, 2020, 25(17): 3955. DOI:10.3390/molecules25173955.
LIU C M, KAO C L, TSENG Y T, et al. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell[J]. Molecules, 2017, 22(9): 1477. DOI:10.3390/molecules22091477.
ZHANG F, ZHANG J G, QU J, et al. Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells[J]. Food and Chemical Toxicology, 2017, 109: 910-922. DOI:10.1016/j.fct.2017.02.038.
EL-ASHMAWY N E, KHEDR N F, EL-BAHRAWY H A, et al. Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms[J]. European Journal of Nutrition, 2018, 57(3): 981-989. DOI:10.1007/s00394-017-1382-6.
LI C L, OU C M, HUANG C C, et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells[J]. Journal of Materials Chemistry B, 2014, 2(28): 4564-4571. DOI:10.1039/c4tb00216d.
AKIMOTO M, IIZUKA M, KANEMATSU R, et al. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death[J]. PLoS ONE, 2015, 10(5): e0126605. DOI:10.1371/journal.pone.0126605.
SAMPATH C, RASHID M R, SANG S, et al. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway[J]. Food Chemistry, 2017, 226: 79-88. DOI:10.1016/j.foodchem.2017.01.056.
LI Y M, TRAN V H, KOTA B P, et al. Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action[J]. Basic & Clinical Pharmacology & Toxicology, 2014, 115(2): 209-215. DOI:10.1111/bcpt.12196.
DONGARE S, GUPTA S K, MATHUR R, et al. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via antiinflammatory and antiangiogenic mechanisms[J]. Molecular Vision, 2016, 22: 599-609.
TOWNSEND E A, ZHANG Y, XU C, et al. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins[J]. American Journal of Respiratory Cell and Molecular Biology, 2014, 50(1): 115-124. DOI:10.1165/rcmb.2013-0133OC.
KHAN A M, SHAHZAD M, RAZA ASIM M B, et al. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response[J]. Pharmaceutical Biology, 2015, 53(3): 359-367. DOI:10.3109/13880209.2014.920396.
EMRANI Z, SHOJAEI E, KHALILI H. Ginger for prevention of antituberculosis-induced gastrointestinal adverse reactions including hepatotoxicity: a randomized pilot clinical trial[J]. Phytotherapy Research, 2016, 30(6): 1003-1009. DOI:10.1002/ptr.5607.
PALATTY P L, HANIADKA R, VALDER B. Ginger in the prevention of nausea and vomiting: a review[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(7): 659-669. DOI:10.1080/10408398.2011.553751.
WU H C, HORNG C T, TSAI S C, et al. Relaxant and vasoprotective effects of ginger extracts on porcine coronary arteries[J]. International Journal of Molecular Medicine, 2018, 41(4): 2420-2428. DOI:10.3892/ijmm.2018.3380.
REDFEARN H N, WARREN M K, GODDARD J M. Reactive extrusion of nonmigratory active and intelligent packaging[J]. ACS Applied Materials & Interfaces, 2023, 15(24): 29511-29524. DOI:10.1021/acsami.3c06589.
ESMAEILI Y, PAIDARI S, BAGHBADERANI S A, et al. Essential oils as natural antimicrobial agents in postharvest treatments of fruits and vegetables: a review[J]. Journal of Food Measurement and Characterization, 2021, 16: 507-522. DOI:10.1007/s11694-021-01178-0.
LAWAL K G, RIAZ A, MOSTAFA H, et al. Development of carboxymethylcellulose based active and edible food packaging films using date seed components as reinforcing agent: physical, biological, and mechanical properties[J]. Food Biophysics, 2023, 18: 497-509. DOI:10.1007/s11483-023-09793-8.
JAYARAMUDU J, REDDY G S M, VARAPRASAD K, et al. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites[J]. Carbohydrate Polymers, 2013, 93(2): 622-627. DOI:10.1016/j.carbpol.2013.01.032.
LIU W, MISRA M, ASKELAND P, et al. ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation[J]. Polymer, 2005, 46(8): 2710-2721. DOI:10.1016/j.polymer.2005.01.027.
SHIV S, RHIM J W. Bio-nanocomposites for food packaging applications[J]. Encyclopedia of Renewable and Sustainable Materials, 2020, 5: 29-41. DOI:10.1016/B978-0-12-803581-8.11415-8.
OTHMAN S H. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler[J]. Agriculture and Agricultural Science Procedia, 2014, 2: 296-303. DOI:10.1016/j.aaspro.2014.11.042.
SORRENTINO A, GORRASI G, VITTORIA V. Potential perspectives of bio-nanocomposites for food packaging applications[J]. Trends in Food Science and Technology, 2007, 18(2): 84-95. DOI:10.1016/j.tifs.2006.09.004.
ZUBKIEWICZ A, SZYMCZYK A, SABLONG R J, et al. Biobased aliphatic/aromatic poly (trimethylene furanoate/sebacate) random copolymers: correlation between mechanical, gas barrier performances and compostability and copolymer composition[J]. Polymer Degradation and Stability, 2022, 195: 109800. DOI:10.1016/j.polymdegradstab.2021.109800.
SAEDI S, KIM J, LEE E, et al. Fully transparent and flexible antibacterial packaging films based on regenerated cellulose extracted from ginger pulp[J]. Industrial Crops and Products, 2023, 197: 116554. DOI:10.1016/j.indcrop.2023.116554.
RAHMASARI Y, YEMIŞ G P. Characterization of ginger starchbased edible films incorporated with coconut shell liquid smoke by ultrasound treatment and application for ground beef[J]. Meat Science, 2022, 188: 108799. DOI:10.1016/j.meatsci.2022.108799.
SHAUKAT M N, PALMERI R, RESTUCCIA C, et al. Glycerol ginger extract addition to edible coating formulation for preventing oxidation and fungal spoilage of stored walnuts[J]. Food Bioscience, 2023, 52: 102420. DOI:10.1016/j.fbio.2023.102420.
ZHANG L, LIU A J, WANG W H, et al. Characterisation of microemulsion nanofilms based on tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: meat packaging application[J]. International Journal of Food Science & Technology, 2017, 52(7): 1670-1679. DOI:10.1111/ijfs.13441.