This study investigated the structure and functional properties including in vitro hypoglycemic, antioxidant, and immunoenhancing activities of water-soluble mulberry leaf polysaccharides (MLP) from Morus abla L. cv. Longsang 1. The results showed that the yield of MLP was (16.16 ± 0.30) mg/g with sugar content of (57.16 ± 4.00)% and uronic acid content of (30.97 ± 2.06)%. The molecular mass distribution of MLP, as measured by gel permeation chromatography (GPC), was mainly concentrated at 21.74 kDa. Monosaccharide composition analysis showed that MLP mainly contained glucose, rhamnose, galactose, xylose, uronic acid (including glucuronic acid, galacturonic acid and mannuronic acid), and mannose, with a molar ratio of 59.17:22.31:10.44:2.65:2.28:1.07. Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy (AFM) indicated that MLP was a pyranose with intertwined branches and helical aggregation. MLP inhibited α-glucosidase and α-amylase with concentration for 50% of maximal effect (EC50) of 1.81 mg/mL and 2.91 mg/mL, respectively, and its inhibitory activities were 49.17% and 37.80% as high as those of acarbose, respectively. MLP scavenged 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical, and hydroxyl radical with EC50 of 0.54, 0.60 and 1.77 mg/mL, respectively, and the radical scavenging capacities were 4.77%, 38.03%, and 19.94% as high as those of ascorbic acid, respectively. When applied to RAW264.7 mouse macrophages, MLP increased the secretion of the proinflammatory cytokines NO, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β and enhanced macrophage proliferation and phagocytosis, thereby exerting an immunoenhancing effect. The research results can provide experimental data for the application and functional evaluation of mulberry leaves grown in cold regions.
AI J, BAO B, BATTINO M, et al. Recent advances on bioactive polysaccharides from mulberry[J]. Food & Function, 2021, 12(12): 5219-5235. DOI:10.1039/d1fo00682g.
LI J S, JI T, SU S L, et al. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway[J]. Journal of Ethnopharmacology, 2022, 283: 114713. DOI:10.1016/j.jep.2021.114713.
FENG F, HU P, TAO X K. Mulberry leaf polysaccharide extracted by response surface methodolog suppresses the proliferation, invasion and migration of MCF-7 breast cancer cells[J]. Food Science and Technology, 2022, 42: 05122. DOI:10.1590/fst.05122.
CHEN X L, SHENG Z C, QIU S L, et al. Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves[J]. PLoS ONE, 2019, 14(1): e0208611. DOI:10.1371/journal.pone.0208611.
MAQSOOD M, ANAM S R, SAHAR A, et al. Mulberry plant as a source of functional food with therapeutic and nutritional applications: a review[J]. Journal of Food Biochemistry, 2022, 46(11): e14263. DOI:10.1111/jfbc.14263.
ZHAO X J, YANG R L, BI Y H, et al. Effects of dietary supplementation with mulberry (Morus alba L.) leaf polysaccharides on immune parameters of weanling pigs[J]. Animals, 2020, 10(1): 35. DOI:10.3390/ani10010035.
XIAO H, ZHANG Y Q, DING X W, et al. Evaluation of bioactive compound contents in 50 varieties of mulberry leaves originating from different regions[J]. International Food Research Journal, 2020, 27(3): 516-528.
MA Q, SANRHANAM R K, XUE Z, et al. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides[J]. International Journal of Biological Macromolecules, 2018, 119: 1137-1143. DOI:10.1016/j.ijbiomac.2018.08.023.
LIAO B Y, ZHU D Y, THAKUR K, et al. Thermal and antioxidant properties of polysaccharides sequentially extracted from mulberry leaves (Morus alba L.)[J]. Molecules, 2017, 22(12): 2271. DOI:10.3390/molecules22122271.
WANG C L, MA Q Q, XUE Z H. Physicochemical properties, α-amylase and α-glucosidase inhibitory effects of the polysaccharide from leaves of Morus alba L. under simulated gastro-intestinal digestion and its fermentation capability in vitro by human gut microbiota[J]. Special Issue: Microbiota, Probiotics and Prebiotics, 2020, 5(56): 2098-2108. DOI:10.1111/ijfs.14759.
WU S. Mulberry leaf polysaccharides suppress renal fibrosis[J]. International Journal of Biological Macromolecules, 2019, 124: 1090-1093. DOI:10.1016/j.ijbiomac.2018.12.029.
WANG Y, SHAO S, GUO C, et al. The homogenous polysaccharide SY01-23 purified from leaf of Morus alba L. has bioactivity on human gut Bacteroides ovatus and Bacteroides cellulosilyticus[J]. International Journal of Biological Macromolecules, 2020, 158: 698-707. DOI:10.1016/j.ijbiomac.2020.05.009.
LI R L, ZHOU J N, ZHANG X Y, et al. Isolation, structural characterization and cholesterol-lowering effects of a novel polysaccharide from mulberry (Morus alba L.) leaf[J]. Industrial Crops and Products, 2023, 202: 117010. DOI:10.1016/j.indcrop.2023.117010.
CHEN R H, ZHOU X, DENG Q F, et al. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: a review[J]. International Journal of Biological Macromolecules, 2024, 257: 128669. DOI:10.1016/j.ijbiomac.2023.128669.
HUANG Y Y, XIE W, TANG T, et al. Structural characteristics, antioxidant and hypoglycemic activities of polysaccharides from Mori fructus based on different extraction methods[J]. Frontiers in Nutrition, 2023, 10: 1125831. DOI:10.3389/fnut.2023.1125831.
CHANG B Y, KOO B S, KIM S Y. Pharmacological activities for Morus alba L., focusing on the immunostimulatory property from the fruit aqueous extract[J]. Foods, 2021, 10(8): 1966. DOI:10.3390/foods10081966.
GU J Y ZHANG H H, WEN C T, et al. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L.[J]. Food Research International, 2020, 136: 109345. DOI:10.1016/j.foodres.2020.109345.
PAN X X, TAO J H, JIANG S, et al. Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative[J]. International Journal of Biological Macromolecules, 2018, 107: 9-16. DOI:10.1016/j.ijbiomac.2017.08.130.
LIU Y, RAN L M, WANG Y H, et al. Basic characterization, antioxidant and immunomodulatory activities of polysaccharides from sea buckthorn leaves[J]. Fitoterapia, 2023, 169: 105592. DOI:10.1016/j.fitote.2023.105592.
MIAO J N, SHI W, ZHANG J Q, et al. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities[J]. International Journal of Biological Macromolecules, 2020, 155: 393-402. DOI:10.1016/j.ijbiomac.2020.03.183.
HAN X Y, SONG C Y, FENG X X, et al. Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China[J]. Food & function, 2020, 11(8): 3112-3125. DOI:10.1039/d0fo00012d.
HAN X Y, BAI Y L, FENG X Z, et al. Characterization of mulberry leaf instant tea and evaluation of its hypolipidemia effect via regulation of intestinal microbiota[J]. Food Science and Human Wellness, 2024, 13(3): 1348-1357. DOI:10.26599/FSHW.2022.9250113.
JI X L, CHENG Y Q, TIAN J Y, et al. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit[J]. Chemical and Biological Technologies in Agriculture, 2021, 8(1): 54. DOI:10.1186/s40538-021-00255-2.
WANG X S, ZHANG J M, WANG P X, et al. Evaluation of alphaglucosidase inhibition activity and glycosides in the Syringa pubescens Turcz from different geographical origin[J]. Scientia Horticulturae, 2023, 320: 112198. DOI:10.1016/j.scienta.2023.112198.
YIN L, FU S S, WU R J, et al. A neutral polysaccharide from green tea: structure, effect on α-amylase activity and hydrolysis property[J]. Archives of Biochemistry and Biophysics, 2020, 687: 108369. DOI:10.1016/j.abb.2020.108369.
ZENG F K, CHEN W B, HE P, et al. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels[J]. Carbohydrate Polymers, 2020, 246: 116551. DOI:10.1016/j.carbpol.2020.116551.
MENDEZ Y A, RAMOS P, MORALES Q L. Role of glycoproteins during fruit ripening and seed development[J]. Cells, 2021, 10(8): 2095. DOI:10.3390/cells10082095.
ANNA S K, MONIKA S C, ARTUR Z. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique[J]. Food Chemistry, 2022, 373: 131487. DOI:10.1016/j.foodchem.2021.131487.
NIE C Z P, ZHU P L, MA S P, et al. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce[J]. Carbohydrate Polymers, 2018, 188: 236-242. DOI:10.1016/j.carbpol.2018.02.009.
HU H B, LIANG H P, LI H M, et al. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus[J]. Carbohydrate Polymers, 2018, 196: 359-367. DOI:10.1016/j.carbpol.2018.05.028.
WANG J Q, NIE S P. Application of atomic force microscopy in microscopic analysis of polysaccharide[J]. Trends in Food Science & Technology, 2019, 87: 35-46. DOI:10.1016/j.tifs.2018.02.005.
PIECZYWEK P M, CIESLA J, PLAZINSKI W, et al. Aggregation and weak gel formation by pectic polysaccharide homogalacturonan[J]. Carbohydrate Polymers, 2021, 256: 35-46. DOI:10.1016/j.carbpol.2020.117566.
GUO R, LI X J, SUN X B, et al. Molecular aggregation via partial Gal removal affects physicochemical and macromolecular properties of tamarind kernel polysaccharides[J]. Carbohydrate Polymers, 2022, 285: 119246. DOI:10.1016/j.carbpol.2022.119264.
LIU X Q, HUSSAIN R, MEHMOOD K, et al. Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy[J]. Biomed Research International, 2022, 2022: 6459585. DOI:10.1155/2022/6459585.
CHEUNG Y C, YIN J Y, WU J Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J]. Carbohydrate Polymers, 2018, 195: 298-302. DOI:10.1016/j.carbpol.2018.04.118.
TANG C, BAO T T, ZHANG Q Q, et al. Clinical potential and mechanistic insights of mulberry (Morus alba L.) leaves in managing type 2 diabetes mellitus: focusing on gut microbiota, inflammation, and metabolism[J]. Journal of Ethnopharmacology, 2023, 306: 116143. DOI:10.1016/j.jep.2023.116143.
WANG Y J, LIU N, XUE X, et al. Purification, structural characterization and in vivo immunoregulatory activity of a novel polysaccharide from Polygonatum sibiricum[J]. International Journal of Biological Macromolecules, 2020, 160: 688-694. DOI:10.1016/j.ijbiomac.2020.05.245.
BELSKA N V, GURLEY A M, DANILET M G, et al. Watersoluble polysaccharide obtained from Acorus calamus L. classically activates macrophages and stimulates Th1 response[J]. International Immunopharmacology, 2010, 10(8): 933-942. DOI:10.1016/j.intimp.2010.05.005.
PARK H Y, OH M J, KIM Y, et al. Immunomodulatory activities of Corchorus olitorius leaf extract: beneficial effects in macrophage and NK cell activation immunosuppressed mice[J]. Journal of Functional Foods, 2018, 46: 220-226. DOI:10.1016/j.jff.2018.05.005.
SONG Y R, HAN A R, LIM T G, et al. Discrimination of structural and immunological features of polysaccharides from persimmon leaves at different maturity stages[J]. Molecules, 2019, 24(2): 356. DOI:10.3390/molecules24020356.