PDF (4.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effect of Dielectric Barrier Discharge-Cold Plasma Treatment on Postmortem Color and Oxidative Stability of Mutton

Manting DU1,2,3 Ziyan YOU1Li HUANG1Ke LI1,2,3Junguang LI1,2,3Yanhong BAI1,2,3 ()
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
Show Author Information

Abstract

The longissimus dorsi muscle of sheep was treated with cold plasma (CP) induced by dielectric barrier discharge (DBD) at different time points (6, 12, 24, 48, 72 and 120 h) after slaughter. By analyzing changes in the color, myoglobin content, fat oxidation, total sulfhydryl content and surface hydrophobicity of samples during postmortem cold storage, the effects of DBD-CP treatment at different time points after slaughter on the color and oxidation stability of mutton at different time points after slaughter were determined. The results showed that DBD-CP treatment at different time points after slaughter had no significant effects on L* or a* values of mutton (P > 0.05), but significantly increased the b* value compared to the untreated control group (P < 0.05). DBD-CP treatment reduced the color stability of the meat and accelerated the deterioration of meat color. DBD-CP treatment at 6 and 12 h postmortem had little impact on the color stability. DBD-CP treatment at all selected time points after slaughter had no significant effect on the myoglobin content of mutton (P > 0.05). The thiobarbituric acid reactive substances (TBARS) value of the DBD-CP treatment group was higher than that of the control group (P < 0.05), and the treatment significantly reduced the total sulfhydryl content in mutton and increased the surface hydrophobicity (P < 0.05). In summary, DBD-CP treatment at 6 to 12 h after slaughter had the most significant effect on stabilizing and maintaining meat color. In addition, it could accelerate the oxidation of myofibrillar protein (MP). Therefore, DBD-CP treatment has potential application value in improving the quality of mutton.

CLC number: TS251.1 Document code: A Article ID: 1002-6630(2024)13-0190-08

References

[2]

KHAN M I, JO C, TARIQ M R. Meat flavor precursors and factors influencing flavor precursors: a systematic review[J]. Meat Science, 2015, 110: 278-284. DOI:10.1016/j.meatsci.2015.08.002.

[3]

SONG S Q, ZHANG X M, HAYAT K, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow[J]. Food Chemistry, 2011, 124(1): 203-209. DOI:10.1016/j.foodchem.2010.06.010.

[4]

SOLADOYE O P, JUÁREZ M L, AALHUS J L, et al. Protein oxidation in processed meat: mechanisms and potential implications on human health[J]. Comprehensive Reviews in Food Science & Food Safety, 2015, 14(2): 106-122. DOI:10.1111/1541-4337.12127.

[5]

LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: a review[J]. Molecular Nutrition & Food Research, 2011, 55(1): 83-95. DOI:10.1002/mnfr.201000453.

[6]

BERARDO A, CLAEYS E, VOSSEN E, et al. Protein oxidation affects proteolysis in a meat model system[J]. Meat Science, 2015, 106: 78-84. DOI:10.1016/j.meatsci.2015.04.002.

[7]

BOONYAWAN D, LAMASAI K, UMONGNO C, et al. Surface dielectric barrier discharge plasma-treated pork cut parts: bactericidal efficacy and physiochemical characteristics[J]. Heliyon, 2022, 8(10): e10915. DOI:10.1016/j.heliyon.2022.e10915.

[8]

ANUNTAGOOL J, SRANGSOMJIT N, THAWEEWONG P, et al. A review on dielectric barrier discharge nonthermal plasma generation, factors affecting reactive species, and microbial inactivation[J]. Food Control, 2023, 153: 109913. DOI:10.1016/j.foodcont.2023.109913.

[10]

HUANG M M, ZHUANG H, ZHAO J Y, et al. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus[J]. Bioelectrochemistry, 2020, 132: 107445. DOI:10.1016/j.bioelechem.2019.107445.

[11]

KIM H J, YONG H I, PARK S, et al. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin[J]. Current Applied Physics, 2013, 13(7): 1420-1425. DOI:10.1016/j.cap.2013.04.021.

[12]

LI C L, PENG A, HE L C, et al. Emulsifying properties development of pork myofibrillar and sacroplasmic protein irradiated at different dose: a combined FT-IR spectroscopy and low-field NMR study[J]. Food Chemistry, 2018, 252: 108-114. DOI:10.1016/j.foodchem.2018.01.104.

[13]

GÖK V, AKTOP S, ÖZKAN M, et al. The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma: a dry-cured beef product[J]. Innovative Food Science and Emerging Technologies, 2019, 56: 102188. DOI:10.1016/j.ifset.2019.102188.

[15]

ZHUANG H, ROTHROCK M J, HIETT K L, et al. In-package antimicrobial treatment of chicken breast meat with high voltage dielectric barrier discharge-electric voltage effect1[J]. Journal of Applied Poultry Research, 2019, 28(4): 801-807. DOI:10.3382/japr/pfz036.

[19]

KRZYWICKI K. The determination of haem pigments in meat[J]. Meat Science, 1982, 7(1): 29-36. DOI:10.1016/0309-1740(82)90095-X.

[20]

PARK D, XIONG Y L, ALDERTON A L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J]. Food Chemistry, 2007, 101(3): 1239-1246. DOI:10.1016/j.foodchem.2006.03.028.

[21]

KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry, 2016, 33: 47-53. DOI:10.1016/j.ultsonch.2016.04.024.

[22]

CHELH I, GATELLIER P, SANTÉ-LHOUTELLIER V. Technical note: a simplified procedure for myofibril hydrophobicity determination[J]. Meat Science, 2006, 74(4): 681-683. DOI:10.1016/j.meatsci.2006.05.019.

[23]

YOUNG O A, HOPKINS D L, PETHICK D W. Critical control points for meat quality in the Australian sheep meat supply chain[J]. Australian Journal of Experimental Agriculture, 2005, 45(5): 593-601. DOI:10.1071/EA04006.

[24]

WULF D M, WISE J W. Measuring muscle color on beef carcasses using the L*a*b* color space[J]. Journal of Animal Science, 1999, 77(9): 2418-2427. DOI:10.2527/1999.7792418x.

[26]

OLIVERA D F, BAMBICHA R, LAPORTE G, et al. Kinetics of colour and texture changes of beef during storage[J]. Journal of Food Science & Technology, 2013, 50(4): 821-825. DOI:10.1007/s13197-012-0885-7.

[27]

GAO X G, XIE L, WANG Z Y, et al. Effect of postmortem time on the metmyoglobin reductase activity, oxygen consumption, and colour stability of different lamb muscles[J]. European Food Research & Technology, 2013, 236(4): 579-587. DOI:10.1007/s00217-012-1903-8.

[28]

WU W, GAO X G, DAI Y, et al. Post-mortem changes in sarcoplasmic proteome and its relationship to meat color traits in M. semitendinosus of Chinese Luxi yellow cattle[J]. Food Research International, 2015, 72: 98-105. DOI:10.1016/j.foodres.2015.03.030.

[29]

ZHOU F B, JONGBERG S, ZHAO M M, et al. Iron (Ⅱ) initiation of lipid and protein oxidation in pork: the role of oxymyoglobin[J]. Journal of Agricultural & Food Chemistry, 2016, 64(22): 4618-4626. DOI:10.1021/acs.jafc.6b01168.

[30]

LUO J, XU W M, LIU Q, et al. Dielectric barrier discharge cold plasma treatment of pork loin: effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein[J]. LWT-Food Science and Technology, 2022, 162: 113484. DOI:10.1016/j.lwt.2022.113484.

[31]

FRÖHLING A, DUREK J, SCHNABEL U, et al. Indirect plasma treatment of fresh pork: decontamination efficiency and effects on quality attributes[J]. Innovative Food Science & Emerging Technologies, 2012, 16: 381-390. DOI:10.1016/j.ifset.2012.09.001.

[32]

HUANG M M, WANG J M, ZHUANG H, et al. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage[J]. Meat Science, 2019, 149: 107-113. DOI:10.1016/j.meatsci.2018.11.016.

[33]

LI M, LI X, XIN J Z, et al. Effects of protein phosphorylation on color stability of ground meat[J]. Food Chemistry, 2017, 219: 304-310. DOI:10.1016/j.foodchem.2016.09.151.

[34]

MORTIMER S I, JACOB R H, KEARNEY G, et al. Genetic variation in colour stability traits of lamb cuts under two packaging systems[J]. Meat Science, 2019, 157: 107870. DOI:10.1016/j.meatsci.2019.06.006.

[36]

VAN LAACK R L J M, SMULDERS J M. Colour stability of bovine longissimus and psoas major muscle as affected by electrical stimulation and hot boning[J]. Meat Science, 1990, 28(3): 211-221. DOI:10.1016/0309-1740(90)90005-Q.

[40]

VIANA F M, CANTO A C V C S, COSTA-LIMA B R C, et al. Color stability and lipid oxidation of broiler breast meat from animals raised on organic versus non-organic production systems[J]. Poultry Science, 2017, 96(3): 747-753. DOI:10.3382/ps/pew331.

[41]

IKAWA S, KITANO K, HAMAGUCHI S. Effects of pH on bacterial inactivation in aqueous solutions due to low-emperature atmospheric pressure plasma application[J]. Plasma Processes & Polymers, 2010, 7(1): 33-42. DOI:10.1002/ppap.200900090.

[42]

OTTO C, ZAHN S, ROST F, et al. Physical methods for cleaning and disinfection of surfaces[J]. Food Engineering Reviews, 2011, 3(3/4): 171-188. DOI:10.1007/s12393-011-9038-4.

[43]

D’AGOSTINO R, FAVIA P, OEHR C, et al. Ion-induced chemical and structural modification of polymer surfaces[M]. New Jersey: Wiley-VCH Verlag GmbH & Co. KGaA, 2005: 205-221. DOI:10.1002/3527605584.ch16.

[46]

GHEISARI H R. Correlation between acid, TBA, peroxide and iodine values, catalase and glutathione peroxidase activities of chicken, cattle and camel meat during refrigerated storage[J]. Veterinary World, 2011, 4(4): 153-157. DOI:10.5455/vetworld.2011.153-157.

[47]

JONGBERG S, SKOV S H, TØRNGREN M A, et al. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties[J]. Food Chemistry, 2011, 128(2): 276-283. DOI:10.1016/j.foodchem.2011.03.015.

[49]

GREENE B E, CUMUZE T H. Relationship between TBA numbers and inexperienced panelists’ assessments of oxidized flavor in cooked beef[J]. Journal of Food Science, 1982, 47(1): 52-54. DOI:10.1111/j.1365-2621.1982.tb11025.x.

[51]

JIA N, WANG L T, SHAO J H, et al. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification[J]. Meat Science, 2017, 127: 45-50. DOI:10.1016/j.meatsci.2017.01.004.

[52]

DONG S, GAO A, XU H, et al. Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders[J]. Food & Bioprocess Technology, 2017, 10(3): 434-444. DOI:10.1007/s11947-016-1814-y.

[53]

KANGII J, MATSUMURA Y, MORI T. Characterization of texture and mechanical properties of heat-induced soy protein gels[J]. Journal of the American Oil Chemists’ Society, 1991, 68(5): 339-345. DOI:10.1007/BF02657690.

[57]

LUO J, NASIRU M M, YAN W J, et al. Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon[J]. LWT-Food Science and Technology, 2020, 117: 108606. DOI:10.1016/j.lwt.2019.108606.

Food Science
Pages 190-197
Cite this article:
DU M, YOU Z, HUANG L, et al. Effect of Dielectric Barrier Discharge-Cold Plasma Treatment on Postmortem Color and Oxidative Stability of Mutton. Food Science, 2024, 45(13): 190-197. https://doi.org/10.7506/spkx1002-6630-20231127-224
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return