PDF (15.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effect of Bifidobacterium animalis subsp. lactis XLTG11 on Immune Function and Intestinal Flora in Cyclophosphamide-Immunosuppressed Mice

Zengbo WANG Mingyang LIUFei LIU ()Bailiang LI ()
Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
Show Author Information

Abstract

Objective

To investigate the effect of Bifidobacterium animalis subsp. lactis XLTG11 (XLTG11) on immune function and intestinal flora in cyclophosphamide (CTX)-immunosuppressed mice.

Methods

Altogether 60 mice were randomly divided into five groups: blank, model, low-dose, medium-dose and high-dose XLTG11 groups. The blank group was injected intraperitoneally with normal saline from day 1 to 3, and the other groups 100 μL of CTX solution (40 mg/kg) to establish an immunocompromised mouse model. From day 4 to 30, the low-, medium- and high-dose XLTG11 groups were given 0.2 mL of XLTG11 suspensions at doses of 2.5 × 106, 2.5 × 107 and 2.5 × 108 CFU/animal, respectively, and both blank and model groups 0.2 mL of normal saline/animal. Body mass, immune organ index, delayed-type metamorphosis, proliferation of splenic lymphocytes, T-lymphocyte subpopulation, natural killer (NK) cell activity, phagocytic activity of peritoneal macrophages, cytokine levels, intestinal flora structure, and short-chain fatty acids (SCFA) were detected in each group of mice.

Results

XLTG11 increased the immune organ index, foot-plantar thickness, splenic lymphocyte proliferation, T lymphocyte subsets CD4+ and CD8+, NK cell activity and macrophage phagocytosis activity, and cellular immune factors (interleukin (IL)-6, IL-10, IL-1β and interferon (IFN)-γ) in immunosuppressed mice. In addition, XLTG11 alleviated intestinal tissue damage caused by CTX, regulated the intestinal flora and increased intestinal SCFA (acetic, propionic and butyric acid) levels.

Conclusion

XLTG11 could significantly enhance the immune function and regulate the intestinal flora of mice.

CLC number: TS201.3 Document code: A Article ID: 1002-6630(2024)15-0103-09

References

[1]

MA W W, LI W W, YU S, et al. Immunomodulatory effects of complex probiotics on the immuno-suppressed mice induced by cyclophosphamide[J]. Frontiers in Microbiology, 2023, 14: 1055197. DOI:10.3389/fmicb.2023.1055197.

[2]

ONISZCZUK A, ONISZCZUK T, GANCARZ M, et al. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases[J]. Molecules, 2021, 26(4): 1172. DOI:10.3390/molecules26041172.

[5]

WANG X Z, ZHANG P, ZHANG X. Probiotics regulate gut microbiota: an effective method to improve immunity[J]. Molecules, 2021, 26(19): 6076. DOI:10.3390/molecules26196076.

[8]

KERRY R G, PATRA J K, GOUDA S, et al. Benefaction of probiotics for human health: a review[J]. Journal of Food and Drug Analysis, 2018, 26(3): 927-939. DOI:10.1016/j.jfda.2018.01.002.

[9]

XU B F, LIANG S N, ZHAO J Y, et al. Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation, enhancing intestinal barrier function and regulating intestinal flora[J]. Food & Function, 2022, 13(11): 6404-6418. DOI:10.1039/d1fo04305f.

[10]

WANG N N, WANG S, XU B F, et al. Alleviation effects of Bifidobacterium animalis subsp. lactis XLTG11 on dextran sulfate sodium-induced colitis in mice[J]. Microorganisms, 2021, 9(10): 2093. DOI:10.3390/microorganisms9102093.

[11]

ZHANG Y, LIN J, ZHONG Q X. S/O/W emulsions prepared with sugar beet pectin to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514[J]. Food Hydrocolloids, 2016, 52: 804-810. DOI:10.1016/j.foodhyd.2015.08.020.

[13]

ALESSANDRI G, OSSIPRANDI M C, MACSHARRY J, et al. Bifidobacterial dialogue with its human host and consequent modulation of the immune system[J]. Frontiers in Immunology, 2019, 10: 2348. DOI:10.3389/fimmu.2019.02348.

[14]

LIM H J, SHIN H S. Antimicrobial and immunomodulatory effects of Bifidobacterium strains: a review[J]. Journal of Microbiology and Biotechnology, 2020, 30(12): 1793. DOI:10.4014/jmb.2007.07046.

[15]

ELLIS H. The mysterious thymus gland and its surgery[J]. Journal of Perioperative Practice, 2018, 28(1/2): 33-34. DOI:10.1177/1750458917742058.

[16]

GUO, Z, XU H Y, XU L, et al. In vivo and in vitro immunomodulatory and anti-inflammatory effects of total flavonoids of astragalus[J]. African Journal of Traditional, Complementary and Alternative Medicines, 2016, 13(4): 60-73. DOI:10.21010/ajtcam.v13i4.10.

[17]

SŁAWIŃSKA A, SIWEK M, ŻYLIŃSKA J, et al. Influence of synbiotics delivered in ovo on immune organs development and structure[J]. Folia Biologica (Krakow), 2014, 62(3): 277-285. DOI:10.3409/fb62_3.277.

[19]

SHU Q, LIN H, RUTHERFURD K J, et al. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice[J]. Microbiology and Immunology, 2000, 44(3): 213-222. DOI:10.1111/j.1348-0421.2000.tb02486.x.

[20]

LI C Y, LIN H C, LAI C H, et al. Immunomodulatory effects of Lactobacillus and Bifidobacterium on both murine and human mitogen-activated T cells[J]. International Archives of Allergy and Immunology, 2011, 156(2): 128-136. DOI:10.1159/000322350.

[21]

KHAN U, GHAZANFAR H. Tlymphocytes and autoimmunity[J]. International Review of Cell and Molecular Biology, 2018, 341: 125-168. DOI:10.1016/bs.ircmb.2018.05.008.

[22]

LI G, LI S, WANG B, et al. The effect of electroacupuncture on postoperative immunoinflammatory response in patients undergoing supratentorial craniotomy[J]. Experimental and Therapeutic Medicine, 2013, 6(3): 699-702. DOI:10.3892/etm.2013.1225.

[23]

KNOOP K A, NEWBERRY R D. Goblet cells: multifaceted players in immunity at mucosal surfaces[J]. Mucosal Immunology, 2018, 11(6): 1551-1557. DOI:10.1038/s41385-018-0039-y.

[24]

LI Y, JIN L, CHEN T X. The effects of secretory IgA in the mucosal immune system[J]. BioMed Research International, 2020, 2020: 2032057. DOI:10.1155/2020/2032057.

[25]

BAI Y, ZENG Z, XIE Z, et al. Effects of polysaccharides from Fuzhuan brick tea on immune function and gut microbiota of cyclophosphamide-treated mice[J]. The Journal of Nutritional Biochemistry, 2022, 101: 108947. DOI:10.1016/j.jnutbio.2022.108947.

[26]

TANAKA T, NARAZAKI M, KISHIMOTO T. Interleukin (IL-6) immunotherapy[J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(8): a028456. DOI:10.1101/cshperspect.a028456.

[27]

MANTIS N J, ROL N, CORTHÉSY B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut[J]. Mucosal Immunology, 2011, 4(6): 603-611. DOI:10.1038/mi.2011.41.

[28]

LASIGLIE D, TRAGGIAI E, FEDERICI S, et al. Role of IL-1 beta in the development of human TH17 cells: lesson from NLPR3 mutated patients[J]. PLoS ONE, 2011, 6(5): e20014. DOI:10.1371/journal.pone.0020014.

[29]

TODOROVIĆ-RAKOVIĆ N. The role of cytokines in the evolution of cancer: IFN-γ paradigm[J]. Cytokine, 2022, 151: 155442. DOI:10.1016/j.cyto.2021.155442.

[30]

DING Y, YAN Y, CHEN D, et al. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice[J]. Food & Function, 2019, 10(6): 3671-3783. DOI:10.1039/c9fo00638a.

[33]

XIE Z Y, BAI Y X, CHEN G J, et al. Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota[J]. Food Research International, 2022, 152: 110901. DOI:10.1016/j.foodres.2021.110901.

[35]

XU X F, ZHANG X W. Effects of cyclophosphamide on immune system and gut microbiota in mice[J]. Microbiological Research, 2015, 171: 97-106. DOI:10.1016/j.micres.2014.11.002.

[36]

RUI Y, WAN P, CHEN G, et al. Simulated digestion and fermentation in vitro by human gut microbiota of intra- and extra-cellular polysaccharides from Aspergillus cristatus[J]. LWT-Food Science and Technology, 2019, 116: 108508. DOI:10.1016/j.lwt.2019.108508.

[37]

LAGKOUVARDOS I, LESKER T R, HITCH T C, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome, 2019, 7: 1-15. DOI:10.1186/s40168-019-0637-2.

[38]

HAN Y, ZHANG Y, OUYANG K H, et al. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota[J]. International Journal of Biological Macromolecules, 2022, 212: 31-42. DOI:10.1016/j.ijbiomac.2022.05.110.

[39]

SHI H J, CHANG Y G, GAO Y, et al. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide[J]. Food & Function, 2017, 8(9): 3383-3393. DOI:10.1039/c7fo00932a.

[41]

QIAO Y T, QIU Z C, TIAN F W, et al. Effect of bacteriocin-producing Pediococcus acidilactici strains on the immune system and intestinal flora of normal mice[J]. Food Science and Human Wellness, 2022, 11(2): 238-246. DOI:10.1016/j.fshw.2021.11.008.

[42]

LIU P Y, WANG Y B, YANG G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J]. Pharmacological Research, 2021, 165: 105420. DOI:10.1016/j.phrs.2021.105420.

[43]

YAO Y, CAI X Y, FEI W D, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 1-12. DOI:10408398.2020.1854675.

[44]

MA T T, LI C, ZHAO F Q, et al. Effects of co-fermented collagen peptide-jackfruit juice on the immune response and gut microbiota in immunosuppressed mice[J]. Food Chemistry, 2021, 365: 130487. DOI:10.1016/j.foodchem.2021.130487.

[45]

XU D C, HU J L, ZHONG Y D, et al. Effects of Rosa roxburghii & edible fungus fermentation broth on immune response and gut microbiota in immunosuppressed mice[J]. Food Science and Human Wellness, 2024, 13(1): 154-165. DOI:10.26599/FSHW.2022.9250013.

Food Science
Pages 103-111
Cite this article:
WANG Z, LIU M, LIU F, et al. Effect of Bifidobacterium animalis subsp. lactis XLTG11 on Immune Function and Intestinal Flora in Cyclophosphamide-Immunosuppressed Mice. Food Science, 2024, 45(15): 103-111. https://doi.org/10.7506/spkx1002-6630-20231204-023
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return