Food flavor plays an important role in people’s life. Traditional methods for flavor analysis and detection have limited ability to predict food flavor. In recent years, many researchers have used machine learning models to effectively process food flavor information and establish classification and prediction models, making flavor prediction more accurate and efficient. The principles of traditional and novel machine learning methods, such as support vector machine (SVM), random forest (RF), k-nearest neighbor (k-NN), and neural network, as well as recent progress on their combined application with flavor analysis instruments and molecular structure analysis for food flavor prediction are reviewed, aiming to provide new ideas for the application of machine learning models in food flavor analysis and prediction. It is found that machine learning models can be used to predict the impacts of different substance components on food flavor, identify the flavor characteristics of foods from different regions. The combination of multiple machine learning models can improve the accuracy and reliability of prediction, and promote in-depth research and development of food flavor.
WANG S Q, CHEN H T, SUN B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry, 2020, 315: 126158. DOI:10.1016/j.foodchem.2019.126158.
SCHIEBERLE P, HOFMANN T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures[J]. Journal of Agricultural and Food Chemistry, 1997, 45(1): 227-232. DOI:10.1021/jf960366o.
MINOR L J. Food flavor[J]. Cornell Hotel and Restaurant Administration Quarterly, 1966, 7(3): 69-83. DOI:10.1177/001088046600700314.
MESHRAM D A, PATIL D D. Digital representation techniques for olfactory features[J]. Information Technology in Industry, 2021, 9(1): 288-294. DOI:10.17762/itii.v9i1.131.
MENIS-HENRIQUE M E C, JANZANTTI N S, ANDRIOT I, et al. Cheese-flavored expanded snacks with low lipid content: oil effects on the in vitro release of butyric acid and on the duration of the dominant sensations of the products[J]. LWT-Food Science and Technology, 2019, 105: 30-36. DOI:10.1016/j.lwt.2019.01.052.
LÖLIGER J. Function and importance of glutamate for savory foods[J]. The Journal of Nutrition, 2000, 130(4): 915S-920S. DOI:10.1093/jn/130.4.915S.
ZENG X Q, CAO R, XI Y, et al. Food flavor analysis 4.0: a cross-domain application of machine learning[J]. Trends in Food Science & Technology, 2023, 138: 116-125. DOI:10.1016/j.tifs.2023.06.011.
WEI G Z, DAN M L, ZHAO G H, et al. Recent advances in chromatography-mass spectrometry and electronic nose technology in food flavor analysis and detection[J]. Food Chemistry, 2023, 405: 134814. DOI:10.1016/j.foodchem.2022.134814.
CHEN G P, HACKETT R, WALKER D, et al. Identification of a specific isoform of tomato lipoxygenase(TomloxC)involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004, 136(1): 2641-2651. DOI:10.1104/pp.104.041608.
CHAMBERS A H, PILLET J, PLOTTO A, et al. Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach[J]. BMC Genomics, 2014, 15: 217. DOI:10.1186/1471-2164-15-217.
BI Q F, GOODMAN K E, KAMINSKY J, et al. What is machine learning? a primer for the epidemiologist[J]. American Journal of Epidemiology, 2019, 188(12): 2222-2239. DOI:10.1093/aje/kwz189.
ZHOU L, ZHANG C, LIU F, et al. Application of deep learning in food: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(6): 1793-1811. DOI:10.1111/1541-4337.12492.
YU S S, HUANG X Y, WANG L, et al. Characterization of selected Chinese soybean paste based on flavor profiles using HS-SPME-GC/MS, E-nose and E-tongue combined with chemometrics[J]. Food Chemistry, 2022, 375: 131840. DOI:10.1016/j.foodchem.2021.131840.
LI Q, GU Y, WANG N F. Application of random forest classifier by means of a QCM-based e-nose in the identification of Chinese liquor flavors[J]. IEEE Sensors Journal, 2017, 17(6): 1788-1794. DOI:10.1109/JSEN.2017.2657653.
MEN H, SHI Y, FU S L, et al. Mining feature of data fusion in the classification of beer flavor information using e-tongue and e-nose[J]. Sensors, 2017, 17(7): 1656. DOI:10.3390/s17071656.
SUN Z, ZHAO W W, LI Y P, et al. An Exploration of Pepino (Solanum muricatum) flavor compounds using machine learning combined with metabolomics and sensory evaluation[J]. Foods, 2022, 11(20): 3248. DOI:10.3390/foods11203248.
BI K X, ZHANG D, QIU T, et al. GC-MS fingerprints profiling using machine learning models for food flavor prediction[J]. Processes, 2019, 8(1): 23. DOI:10.3390/pr8010023.
CHANG Y T, HSUEH M C, HUNG S P, et al. Prediction of specialty coffee flavors based on near-infrared spectra using machine-and deep-learning methods[J]. Journal of the Science of Food and Agriculture, 2021, 101(11): 4705-4714. DOI:10.1002/jsfa.11116.
LI B, LIU M, LIN F, et al. Marker-independent food identification enabled by combingmachine learning algorithms with comprehensive GC×GC/TOF-MS[J]. Molecules, 2022, 27(19): 6237. DOI:10.3390/molecules27196237.
MAHESH B. Machine learning algorithms: a review[J]. International Journal of Science and Research, 2020, 9(1): 381-386. DOI:10.21275/ART20203995.
DAS S, DEY A, PAL A, et al. Applications of artificial intelligence in machine learning: review and prospect[J]. International Journal of Computer Applications, 2015, 115(9): 31-41. DOI:10.5120/20182-2402.
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. DOI:10.1007/BF00994018.
ZUO R G, CARRANZA E J M. Support vector machine: a tool for mapping mineral prospectivity[J]. Computers & Geosciences, 2011, 37(12): 1967-1975. DOI:10.1016/j.cageo.2010.09.014.
YANG Z W, MIAO N, ZHANG X, et al. Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea[J]. Food Control, 2021, 121: 107608. DOI:10.1016/j.foodcont.2020.107608.
LEONG Y X, LEE Y H, KOH C S L, et al. Surface-enhanced Raman scattering (SERS) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors[J]. Nano Letters, 2021, 21(6): 2642-2649. DOI:10.1021/acs.nanolett.1c00416.
GUPTA B, RAWAT A, JAIN A, et al. Analysis of various decision tree algorithms for classification in data mining[J]. International Journal of Computer Applications, 2017, 163(8): 15-19. DOI:10.5120/ijca2017913660.
KOTSIANTS S B. Supervised machine learning: a review of classification techniques[J]. Emerging Artificial Intelligence Applications in Computer Engineering, 2007, 160(1): 249-268.
MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics, 2004, 18(6): 275-285. DOI:10.1002/cem.873.
ROMEO-ARROYO E, SORIA J, MORA M, et al. Exploratory research on sweetness perception: decision trees to study electroencephalographic data and its relationship with the explicit response to sweet odor, taste, and flavor[J]. Sensors, 2022, 22(18): 6787. DOI:10.3390/s22186787.
DAGAN-WIENER A, NISSIM I, BEN ABU N, et al. Bitter or not?BitterPredict, a tool for predicting taste from chemical structure[J]. Scientific Reports, 2017, 7: 12074. DOI:10.1038/s41598-017-12359-7.
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI:10.1023/A:1010933404324.
SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93-101. DOI:10.1016/j.eswa.2019.05.028.
SPEISER J L, DURKALSKI V L, LEE W M. Random forest classification of etiologies for an orphan disease[J]. Statistics in Medicine, 2015, 34(5): 887-899. DOI:10.1002/sim.6351.
BOULESTEIX A L, JANITZA S, KRUPPA J, et al. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2(6): 493-507. DOI:10.1002/widm.1072.
SARKER I H. Machine learning: algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2: 160-180. DOI:10.1007/s42979-021-00592-x.
ZHANG Z D, JUNG C. GBDT-MO: gradient-boosted decision trees for multiple outputs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(7): 3156-3167. DOI:10.1109/TNNLS.2020.3009776.
LI Z, LU T D, YU K G, et al. Interpolation of GNSS position time series using GBDT, XGBoost, and RF machine learning algorithms and models error analysis[J]. Remote Sensing, 2023, 15(18): 4374. DOI:10.3390/rs15184374.
ARMSTRONG C E J, NIIMI J, BOSS P K, et al. Use of machine learning with fused spectral data for prediction of product sensory characteristics: the case of grape to wine[J]. Foods, 2023, 12(4): 757. DOI:10.3390/foods12040757.
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. DOI:10.1109/TIT.1967.1053964.
ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185. DOI:10.2307/2685209.
ALI M, JUNG L T, ABDEL-ATY A H, et al. Semantic-k-NN algorithm: an enhanced version of traditional k-NN algorithm[J]. Expert Systems with Applications, 2020, 151: 113374. DOI:10.1016/j.eswa.2020.113374.
SAMANIEGO L, BARDOSSY A, SCHULZ K. Supervised classification of remotely sensed imagery using a modified k-NN technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7): 2112-2125. DOI:10.1109/TGRS.2008.916629.
PRATAMA A H, GUNAWAN A A N, SUYANTO H. Determination characteristic and classification the types of orange using UVVis spectrophotometer by k-nearest neighbor algorithm[J]. Instrumentation Mesure Métrologie, 2019, 18(4): 413-419. DOI:10.18280/i2m.180411.
HUANG G B, CHEN Y Q, BABRI H A. Classification ability of single hidden layer feedforward neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(3): 799-801. DOI:10.1109/72.846750.
DING S F, XU X Z, NIE R. Extreme learning machine and its applications[J]. Neural Computing and Applications, 2014, 25: 549-556. DOI:10.1007/s00521-013-1522-8.
MAO W T, HE L, YAN Y J, et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems and Signal Processing, 2017, 83: 450-473. DOI:10.1016/j.ymssp.2016.06.024.
YU L A, DAI W, TANG L. A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting[J]. Engineering Applications of Artificial Intelligence, 2016, 47: 110-121. DOI:10.1016/j.engappai.2015.04.016.
CAO J W, LIN Z P, HUANG G B, et al. Voting based extreme learning machine[J]. Information Sciences, 2012, 185(1): 66-77. DOI:10.1016/j.ins.2011.09.015.
ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10): 1759-1763. DOI:/10.1016/j.patcog.2005.03.028.
WU Y C, FENG J W. Development and application of artificial neural network[J]. Wireless Personal Communications, 2018, 102: 1645-1656. DOI:10.1007/s11277-017-5224-x.
AGATONOVIC-KUSTRIN S, BERESFORD R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research[J]. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22(5): 717-727. DOI:10.1016/S0731-7085(99)00272-1.
YU P G, LOW M Y, ZHOU W B. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages[J]. Food Research International, 2018, 103: 68-75. DOI:10.1016/j.foodres.2017.10.015.
KROGH A. What are artificial neural networks?[J]. Nature Biotechnology, 2008, 26(2): 195-197. DOI:10.1038/nbt1386.
BARMA S D, DAS B, GIRI A, et al. Back propagation artificial neural network(BPANN)based performance analysis of diesel engine using biodiesel[J]. Journal of Renewable and Sustainable Energy, 2011, 3(1): 13101. DOI:10.1063/1.3517229.
ARBOLEDA E R. Discrimination of civet coffee using near infrared spectroscopy and artificial neural network[J]. International Journal of Advanced Computer Research, 2018, 8(39): 324-334. DOI:10.19101/IJACR.2018.839007.
ALZUBAIDI L, ZHANG J, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data, 2021, 8(1): 53. DOI:10.1186/s40537-021-00444-8.
DENG L, YU D. Deep learning: methods and applications[J]. Foundations and Trends® in Signal Processing, 2014, 7(3/4): 197-387. DOI:10.1561/2000000039.
CAI F, CUI J, DONG B, et al. Training back-propagation neural network using hybrid fruit fly optimization algorithm[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(5): 3212-3221. DOI:10.1166/jctn.2016.4978.
BAYKAL H, YILDIRIM H K. Application of artificial neural networks (ANNs) in wine technology[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(5): 415-421. DOI:10.1080/10408398.2010.540359.
ZHU L T, JIA H L, CHEN Y B, et al. A novel method for soil organic matter determination by using an artificial olfactory system[J]. Sensors, 2019, 19(15): 3417. DOI:10.3390/s19153417.
TIAN H X, LIUH, HE Y J, et al. Combined application of electronic nose analysis and back-propagation neural network and random forest models for assessing yogurt flavor acceptability[J]. Journal of Food Measurement and Characterization, 2020, 14: 573-583. DOI:10.1007/s11694-019-00335-w.
HANAFIZADEH P, RAVASAN A Z, KHAKI H R. An expert system for perfume selection using artificial neural network[J]. Expert Systems with Applications, 2010, 37(12): 8879-8887. DOI:10.1016/j.eswa.2010.06.008.
YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights into Imaging, 2018, 9: 611-629. DOI:10.1007/s13244-018-0639-9.
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. London: MIT Press, 2016.
WU D L, LUO D H, WONG K Y, et al. POP-CNN: predicting odor pleasantness with convolutional neural network[J]. IEEE Sensors Journal, 2019, 19(23): 11337-11345. DOI:10.1109/JSEN.2019.2933692.
LIU M C, SHI J X, LI Z, et al. Towards better analysis of deep convolutional neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(1): 91-100. DOI:10.1109/TVCG.2016.2598831.
BEULLENS K, KIRSANOV D, IRUDAYARAJ J, et al. The electronic tongue and ATR-FTIR for rapid detection of sugars and acids in tomatoes[J]. Sensors and Actuators B: Chemical, 2006, 116(1/2): 107-115. DOI:10.1016/j.snb.2005.11.084.
LU L, HU Z Q, HU X Q, et al. Electronic tongue and electronic nose for food quality and safety[J]. Food Research International, 2022, 162: 112214. DOI:10.1016/j.foodres.2022.112214.
SHI H, ZHANG M, ADHIKARI B. Advances of electronic nose and its application in fresh foods: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(16): 2700-2710. DOI:10.1080/10408398.2017.1327419.
HUSSAIN S Z, MAQBOOL K. GC-MS: principle, technique and its application in food science[J]. International Journal of Current Science, 2014, 13: 116-126.
JOHNSON D E. Applied multivariate methods for data analysts[M]. Duxbury Press, 1998.
LEE K M, HERRMAN T J, LINGENFELSER J, et al. Classification and prediction of maize hardness-associated properties using multivariate statistical analyses[J]. Journal of Cereal Science, 2005, 41(1): 85-93. DOI:10.1016/j.jcs.2004.09.006.
BOWLER A, ESCRIG J, POUND M, et al. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning[J]. Fermentation, 2021, 7(1): 34. DOI:10.3390/fermentation7010034.
SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. DOI:10.1016/j.physd.2019.132306.
SHI Y, GONG F R, WANG M Y, et al. A deep feature mining method of electronic nose sensor data for identifying beer olfactory information[J]. Journal of Food Engineering, 2019, 263: 437-445. DOI:10.1016/j.jfoodeng.2019.07.023.
JIN G Y, ZHU Y, XU Y. Mystery behind Chinese liquor fermentation[J]. Trends in Food Science & Technology, 2017, 63: 18-28. DOI:10.1016/j.tifs.2017.02.016.
SAVILLE R, KAZUOKA T, SHIMOGUCHI N N, et al. Recognition of Japanese sake quality using machine learning based analysis of physicochemical properties[J]. Journal of the American Society of Brewing Chemists, 2022, 80(2): 146-154. DOI:10.1080/03610470.2021.1939973.
BLANCO M, VILLARROYA I. NIR spectroscopy: a rapid-response analytical tool[J]. TrAC-Trends in Analytical Chemistry, 2002, 21(4): 240-250. DOI:10.1016/S0165-9936(02)00404-1.
LINK J V, LEMES A L G, MARQUETTI I, et al. Geographical and genotypic segmentation of arabica coffee using self-organizing maps[J]. Food Research International, 2014, 59: 1-7. DOI:10.1016/j.foodres.2014.01.063.
BONA E, MARQUETTI I, LINK J V, et al. Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee[J]. LWT-Food Science and Technology, 2017, 76: 330-336. DOI:10.1016/j.lwt.2016.04.048.
HE Y, LI X L, DENG X F. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J]. Journal of Food Engineering, 2007, 79(4): 1238-1242. DOI:10.1016/j.jfoodeng.2006.04.042.
LIN K, ZHANG L W, HAN X, et al. Quantitative structure-activity relationship modeling coupled with molecular docking analysis in screening of angiotensin I-converting enzyme inhibitory peptides from Qula casein hydrolysates obtained by two-enzyme combination hydrolysis[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3221-3228. DOI:10.1021/acs.jafc.8b00313.
ZHENG S Q, CHANG W P, XU W X, et al. E-sweet: a machinelearning based platform for the prediction of sweetener and its relative sweetness[J]. Frontiers in Chemistry, 2019, 7: 35. DOI:10.3389/fchem.2019.00035.
YANG Z F, XIAO R, XIONG G L, et al. A novel multi-layer prediction approach for sweetness evaluation based on systematic machine learning modeling[J]. Food Chemistry, 2022, 372: 131249. DOI:10.1016/j.foodchem.2021.131249.
NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21. DOI:10.3389/fnbot.2013.00021.
ZHANG Y R, HAGHANI A. A gradient boosting method to improve travel time prediction[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 308-324. DOI:10.1016/j.trc.2015.02.019.
BO W C, QIN D Y, ZHENG X, et al. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network[J]. Food Research International, 2022, 153: 110974. DOI:10.1016/j.foodres.2022.110974.