PDF (3.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effect of Lactobacillus helveticus LH43 as an Auxiliary Starter on the Quality and Protein Conformation of Yogurt

Yan MA1 Yuxing LI2Bailiang LI2 ()
Shenyang Key Laboratory for the Development and Application of Functional Feed, Shenyang Normal University, Shenyang 110034, China
Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
Show Author Information

Abstract

This study was conducted in order to investigate the effect of Lactobacillus helveticus LH43, which has the ability to produce high-molecular-mass extracellular polysaccharides, as an auxiliary starter on the gel properties and protein conformation as determined using a texture analyzer, a rheometer, scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), fluorescence spectrophotometry and circular dichroism (CD) spectroscopy. The results showed that the application of L. helveticus LH43 as an auxiliary starter significantly enhanced the textural properties, water-holding capacity (WHC) and rheological characteristics of yoghurt and improved its microstructure and flavor characteristics. Additionally, the strain reduced the surface hydrophobicity, free sulfhydryl content and relative content of random coil of yoghurt proteins, and increased the relative content of α-helical structures, confirming α-helix and random coil to be intrinsic factors leading to differences in the gel properties of fermented milk. In conclusion, L. helveticus LH43 can be used to improve the gel properties of dairy products, and this study provides a new reference for improving the fermentation process of yoghurt.

CLC number: TS252.54 Document code: A Article ID: 1002-6630(2025)05-0134-08

References

[6]

PADMANABHAN A, TONG Y, WU Q L, et al. Proteomic analysis reveals potential factors associated with enhanced EPS production in Streptococcus thermophilus ASCC 1275[J]. Scientific Reports, 2020, 10(1): 807. DOI:10.1038/s41598-020-57665-9.

[8]

ZHANG K Y, TANG H W, FARID M S, et al. Effect of Lactobacillus helveticus exopolysaccharides molecular weight on yogurt gel properties and its internal mechanism[J]. International Journal of Biological Macromolecules, 2024, 262: 130006. DOI:10.1016/j.ijbiomac.2024.130006.

[9]

MEENA L, NEOG R, YASHINI M, et al. Pineapple pomace powder (freeze-dried): effect on the texture and rheological properties of set-type yogurt[J]. Food Chemistry Advances, 2022, 1: 100101. DOI:10.1016/j.focha.2022.100101.

[10]

ZHANG X L, LAPOINTE G, LIU Y, et al. Comparative analysis of exopolysaccharide-producing Lactiplantibacillus plantarum with ropy and non-ropy phenotypes on the gel properties and protein conformation of fermented milk[J]. Food Chemistry, 2023, 420: 136117. DOI:10.1016/j.foodchem.2023.136117.

[11]

MAHOMUD M S, KATSUNO N, NISHIZU T. Formation of soluble protein complexes and yoghurt properties influenced by the addition of whey protein concentrate[J]. Innovative Food Science & Emerging Technologies, 2017, 44: 173-180. DOI:10.1016/j.ifset.2017.05.010.

[12]

GE Z W, BAO X, LI Z Y, et al. In situ exopolysaccharides produced by Lactobacillus helveticus MB2-1 and its effect on gel properties of Sayram ketteki yoghurt[J]. International Journal of Biological Macromolecules, 2022, 208: 314-323. DOI:10.1016/j.ijbiomac.2022.03.027.

[13]

ESPÍRITO-SANTO A P, LAGAZZO A, SOUSA A L O P, et al. Rheology, spontaneous whey separation, microstructure and sensorial characteristics of probiotic yoghurts enriched with passion fruit fiber[J]. Food Research International, 2013, 50(1): 224-231. DOI:10.1016/j.foodres.2012.09.012.

[14]

DING R X, LI M H, ZOU Y T, et al. Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt[J]. Food Bioscience, 2022, 46: 101368. DOI:10.1016/j.fbio.2021.101368.

[15]

QIU L Q, ZHANG M, MUJUMDAR A S, et al. Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt[J]. Food Bioscience, 2021, 43: 101249. DOI:10.1016/j.fbio.2021.101249.

[16]

YANG J J, SUN J W, YAN J Y, et al. Impact of Potentilla anserine polysaccharide on storage properties of probiotic yak yoghurt[J]. International Dairy Journal, 2023, 141: 105585. DOI:10.1016/j.idairyj.2023.105585.

[17]

LI R, CUI Q, WANG G R, et al. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates[J]. Food Hydrocolloids, 2019, 95: 349-357. DOI:10.1016/j.foodhyd.2019.04.030.

[18]

HE Z Y, XU M Z, ZENG M M, et al. Interactions of milk α-and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts[J]. Food Chemistry, 2016, 199: 314-322. DOI:10.1016/j.foodchem.2015.12.035.

[19]

WEE M S M, YUSOFF R, LIN L, et al. Effect of polysaccharide concentration and charge density on acid-induced soy protein isolate-polysaccharide gels using HCl[J]. Food Structure, 2017, 13: 45-55. DOI:10.1016/j.foostr.2016.08.001.

[20]

LIU L, HUANG Y T, ZHANG X Q, et al. Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria[J]. Food Hydrocolloids, 2023, 136: 108252. DOI:10.1016/j.foodhyd.2022.108252.

[21]

TIAN R C, YU Z M, YU L L, et al. Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk[J]. Food Bioscience, 2022, 50: 102167. DOI:10.1016/j.fbio.2022.102167.

[22]

PENG X Y, REN C G, GUO S T. Particle formation and gelation of soymilk: effect of heat[J]. Trends in Food Science & Technology, 2016, 54: 138-147. DOI:10.1016/j.tifs.2016.06.005.

[23]

ZHOU L, FENG X, YANG Y L, et al. Effects of high-speed shear homogenization on properties and structure of the chicken myofibrillar protein and low-fat mixed gel[J]. LWT-Food Science and Technology, 2019, 110: 19-24. DOI:10.1016/j.lwt.2019.04.061.

[24]

ALAVI F, MOMEN S, EMAM-DJOMEH Z, et al. Radical cross-linked whey protein aggregates as building blocks of non-heated coldset gels[J]. Food Hydrocolloids, 2018, 81: 429-441. DOI:10.1016/j.foodhyd.2018.03.016.

[25]

AMATAYAKUL T, SHERKAT F, SHAH N P. Syneresis in set yogurt as affected by EPS starter cultures and levels of solids[J]. International Journal of Dairy Technology, 2006, 59(3): 216-221. DOI:10.1111/j.1471-0307.2006.00264.x.

[26]

BULLARD J, ST-GELAIS D, TURGEON S L. Production of set yoghurts using thermophilic starters composed of two strains with different growth biocompatibilities and producing different exopolysaccharides[J]. International Dairy Journal, 2018, 79: 33-42. DOI:10.1016/j.idairyj.2017.12.004.

[27]

KHANAL B K S, BHANDARI B, PRAKASH S, et al. Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate[J]. Food Hydrocolloids, 2018, 83: 97-108. DOI:10.1016/j.foodhyd.2018.03.015.

[28]

AKKAYA S, OZEL B, OZTOP M H, et al. Physical characterization of high methoxyl pectin and sunflower oil wax emulsions: a low-field 1H NMR relaxometry study[J]. Journal of Food Science, 2021, 86(1): 120-128. DOI:10.1111/1750-3841.15560.

[29]

GE X J, TANG N Y, HUANG Y X, et al. Fermentative and physicochemical properties of fermented milk supplemented with sea buckthorn (Hippophae eleagnaceae L.)[J]. LWT-Food Science and Technology, 2022, 153: 112484. DOI:10.1016/j.lwt.2021.112484.

[30]

AYYASH M, ABU-JDAYIL B, ITSARANUWAT P, et al. Exopolysaccharide produced by the potential probiotic Lactococcus garvieae C47: structural characteristics, rheological properties, bioactivities and impact on fermented camel milk[J]. Food Chemistry, 2020, 333: 127418. DOI:10.1016/j.foodchem.2020.127418.

[31]

TIWARI S, KAVITAKE D, DEVI P B, et al. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt[J]. International Journal of Biological Macromolecules, 2021, 183: 1585-1595. DOI:10.1016/j.ijbiomac.2021.05.140.

[32]

MENDE S, PETER M, BARTELS K, et al. Addition of purified exopolysaccharide isolates from S. thermophilus to milk and their impact on the rheology of acid gels[J]. Food Hydrocolloids, 2013, 32(1): 178-185. DOI:10.1016/j.foodhyd.2012.12.011.

[33]

YU H Y, WANG L, MCCARTHY K L. Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy[J]. Journal of Food and Drug Analysis, 2016, 24(4): 804-812. DOI:10.1016/j.jfda.2016.04.002.

[34]

YANG X Y, FENG J, ZHU Q Q, et al. A relation between exopolysaccharide from lactic acid bacteria and properties of fermentation induced soybean protein gels[J]. Polymers, 2021, 14(1): 90. DOI:10.3390/polym14010090.

[35]

LU L, HU Z Q, HU X Q, et al. Electronic tongue and electronic nose for food quality and safety[J]. Food Research International, 2022, 162: 112214. DOI:10.1016/j.foodres.2022.112214.

[36]

HICKISCH A, BINDL K, VOGEL R F, et al. Thermal treatment of lupin-based milk alternatives-impact on lupin proteins and the network of respective lupin-based yogurt alternatives[J]. Food Research International, 2016, 89: 850-859. DOI:10.1016/j.foodres.2016.10.013.

[37]

LI R L, WU N, XUE H, et al. Influence and effect mechanism of disulfide bonds linkages between protein-coated lipid droplets and the protein matrix on the physicochemical properties, microstructure, and protein structure of ovalbumin emulsion gels[J]. Colloids and Surfaces B: Biointerfaces, 2023, 223: 113182. DOI:10.1016/j.colsurfb.2023.113182.

[38]

GREENFIELD N J. Using circular dichroism spectra to estimate protein secondary structure[J]. Nature Protocols, 2006, 1(6): 2876-2890. DOI:10.1038/nprot.2006.202.

Food Science
Pages 134-141
Cite this article:
MA Y, LI Y, LI B. Effect of Lactobacillus helveticus LH43 as an Auxiliary Starter on the Quality and Protein Conformation of Yogurt. Food Science, 2025, 46(5): 134-141. https://doi.org/10.7506/spkx1002-6630-20240703-039
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return