PDF (5.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

Effects of Storage Conditions on Gel Characteristics of Soft-Boiled Egg White and Underlying Mechanisms

Cong XIANG1 Mengzhen ZHONG2Jiaying HUO2Shugang LI2Lulu MA2 ()
Department of Smart Agriculture Industry, Guangzhou Technician College, Guangzhou 510410, China
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
Show Author Information

Abstract

In this study, the effects and underlying mechanisms of storage conditions on the gel properties of soft-boiled egg white prepared from fresh eggs stored at 4 or 25 ℃ for 0-12 days were investigated. The results showed that the texture properties, β-sheet content, and disulfide bond content of egg white gel initially increased and subsequently decreased with storage time, reaching the highest values after 9 days. Disulfide bonds served as the major intermolecular force. Compared with those of fresh samples, the resilience, springiness, β-sheet content, and disulfide bond content of softboiled egg white gels from eggs stored for 9 days increased by 16.7%, 29.9%, 16.1% and 22.1% for 4 ℃, and by 34.7%, 32.4%, 30.4% and 25.7% for 25 ℃, respectively, and the microstructure of the samples stored at 25 ℃ for 9 days was more uniform and compact, so it had the best gel properties. Proteomics analysis showed that the abundance of mucin 5B in the 25 ℃/9 days group was 6.4 and 11.4 times higher than that of the 4 ℃/9 days group and the fresh sample, respectively. which may account for its enhanced thermogel properties.

CLC number: TS253 Document code: A Article ID: 1002-6630(2025)05-0281-11

References

[3]

ZANG J W, ZHANG Y Y, PAN X Y, et al. Advances in the formation mechanism, influencing factors and applications of egg white gels: a review[J]. Trends in Food Science & Technology, 2023, 138: 417-432. DOI:10.1016/j.tifs.2023.06.025.

[4]

QIU N, MA M H, ZHAO L, et al. Comparative proteomic analysis of egg white proteins under various storage temperatures[J]. Journal of Agricultural and Food Chemistry, 2012, 60(31): 7746-7753. DOI:10.1021/jf302100m.

[5]

LI G, MI S Y, ZENG Q, et al. Quantitative proteomics provides insights into the mechanism of the differences in heat-induced gel properties for egg white proteins with different interior quality during ageing in laying hens[J]. Food Chemistry, 2023, 419: 136031. DOI:10.1016/j.foodchem.2023.136031.

[6]

ILLERA A E, SOUZA V R, TANG L Y, et al. Effect of high voltage atmospheric cold plasma on chicken eggs quality during refrigerated storage[J]. Food Bioscience, 2023, 53: 102754. DOI:10.1016/j.fbio.2023.102754.

[7]

MELLOR D B, GARDNER F A, CAMPOS E J. Effect of type of package and storage temperature on interior quality of shell treated shell eggs[J]. Poultry Science, 1975, 54(3): 742-746. DOI:10.3382/ps.0540742.

[8]

GOODRUM J W, BRITTON W M, DAVIS J B. Effect of storage conditions on albumen pH and subsequent hard-cooked egg peelability and albumen shear strength[J]. Poultry Science, 1989, 68(9): 1226-1231. DOI:10.3382/ps.0681226.

[9]

FULLER G W, ANGUS P. Peelability of hard-cooked eggs[J]. Poultry Science, 1969, 48(4): 1145-1151. DOI:10.3382/ps.0481145.

[10]

REINKE W C, SPENCER J V, TRYHNEW L J. The effect of storage upon the chemical, physical and functional properties of chicken eggs[J]. Poultry Science, 1973, 52(2): 692-702. DOI:10.3382/ps.0520692.

[11]

LI J H, ZHANG W J, TANG T T, et al. Thermal gelation and digestion properties of hen egg white: study on the effect of neutral and alkaline salts addition[J]. Food Chemistry, 2023, 409: 135263. DOI:10.1016/j.foodchem.2022.135263.

[12]

XUE H, TU Y G, ZHANG G W, et al. Mechanism of ultrasound and tea polyphenol assisted ultrasound modification of egg white protein gel[J]. Ultrasonics Sonochemistry, 2021, 81: 105857. DOI:10.1016/j.ultsonch.2021.105857.

[13]

LIU X, MA L L, ZHONG M Z, et al. Formation mechanism of high-viscosity gelatinous egg white among “Fenghuang egg”: phenomenon, structure, and substance composition[J]. International Journal of Biological Macromolecules, 2022, 217: 803-813. DOI:10.1016/j.ijbiomac.2022.07.089.

[14]

JIN H B, CHEN J H, ZHANG J, et al. Impact of phosphates on heat-induced egg white gel properties: texture, water state, micro-rheology and microstructure[J]. Food Hydrocolloids, 2021, 110: 106200. DOI:10.1016/j.foodhyd.2020.106200.

[15]

TAN J E, DENG C Y, YAO Y, et al. Regulation of different copper salts on alkali-induced egg white gels: physicochemical characteristics, microstructure and protein conformation[J]. Food Chemistry, 2024, 435: 137346. DOI:10.1016/j.foodchem.2023.137346.

[16]

XUE H, XU M, ZHANG G W, et al. Study on the mechanism of enhanced gel strength of heat-induced egg white by shikimic acid braising[J]. Poultry Science, 2022, 101(5): 101774. DOI:10.1016/j.psj.2022.101774.

[17]

CHEN R, JIN H B, PAN J J, et al. Underlying mechanisms of egg white thinning in hot spring eggs during storage: weak gel properties and quantitative proteome analysis[J]. Food Research International, 2023, 172: 113157. DOI:10.1016/j.foodres.2023.113157.

[18]

XIA M Q, ZHAO Q N, ISOBE K, et al. Lysozyme impacts gel properties of egg white protein via electrostatic interactions, polarity differences, local pH regulation, or as a filler[J]. International Journal of Biological Macromolecules, 2022, 223: 1727-1736. DOI:10.1016/j.ijbiomac.2022.10.101.

[19]

LIU X, WANG J Q, HUANG Q, et al. Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: gel properties, structure and quantitative proteome analysis[J]. Food Hydrocolloids, 2020, 106: 105873. DOI:10.1016/j.foodhyd.2020.105873.

[20]

DA SILVA PIRES P G, DA SILVA PIRES P D, CARDINAL K M, et al. The use of coatings in eggs: a systematic review[J]. Trends in Food Science & Technology, 2020, 106: 312-321. DOI:10.1016/j.tifs.2020.10.019.

[21]

LI L, REN S J, YANG H, et al. Study of the molecular structure of proteins in eggs under different storage conditions[J]. Journal of Food Processing and Preservation, 2023, 2023: 4754074. DOI:10.1155/2023/4754074.

[22]

ABOONAJMI M, NAJAFABADI T A. Prediction of poultry egg freshness using Vis-Nir spectroscopy with maximum likelihood method[J]. International Journal of Food Properties, 2014, 17(10): 2166-2176. DOI:10.1080/10942912.2013.784330.

[23]

TAN W, ZHANG Q J, YANG L, et al. Actual time determination of egg freshness: a centroid rate based approach[J]. Food Packaging and Shelf Life, 2020, 26: 100574. DOI:10.1016/j.fpsl.2020.100574.

[24]

LIU Y D, YING Y B, OUYANG A G, et al. Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology[J]. Food Control, 2007, 18(1): 18-22. DOI:10.1016/j.foodcont.2005.07.011.

[25]

YIMENU S M, KIM J Y, KIM B S. Prediction of egg freshness during storage using electronic nose[J]. Poultry Science, 2017, 96(10): 3733-3746. DOI:10.3382/ps/pex193.

[26]

WANG J Q, XIAO J, LIU X, et al. Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs[J]. Meat Science, 2021, 172: 108343. DOI:10.1016/j.meatsci.2020.108343.

[27]

SCOTT T A, SILVERSIDES F G. The effect of storage and strain of hen on egg quality[J]. Poultry Science, 2000, 79(12): 1725-1729. DOI:10.1093/ps/79.12.1725.

[28]

WENGERSKA K, BATKOWSKA J, DRABIK K. The eggshell defect as a factor affecting the egg quality after storage[J]. Poultry Science, 2023, 102(7): 102749. DOI:10.1016/j.psj.2023.102749.

[29]

DE ARAÚJO SOARES R, BORGES S V, DIAS M V, et al. Impact of whey protein isolate/sodium montmorillonite/sodium metabisulfite coating on the shelf life of fresh eggs during storage[J]. LWT-Food Science and Technology, 2021, 139: 110611. DOI:10.1016/j.lwt.2020.110611.

[30]

XUE H, XU M, LIAO M F, et al. Effects of tea and Illicium verum braise on physicochemical characteristics, microstructure, and molecular structure of heat-induced egg white protein gel[J]. Food Hydrocolloids, 2021, 110: 106181. DOI:10.1016/j.foodhyd.2020.106181.

[31]

HAMMERSHØJ M, LARSEN L B, ANDERSEN A B, et al. Storage of shell eggs influences the albumen gelling properties[J]. LWT-Food Science and Technololy, 2002, 35(1): 62-69. DOI:10.1006/fstl.2001.0811.

[32]

MINE Y. Effect of dry heat and mild alkaline treatment on functional properties of egg white proteins[J]. Journal of Agricultural and Food Chemistry, 1997, 45(8): 2924-2928. DOI:10.1021/jf970158b.

[34]

DENG C Y, SHAO Y Y, XU M S, et al. Effects of metal ions on the physico-chemical, microstructural and digestion characteristics of alkali-induced egg white gel[J]. Food Hydrocolloids, 2020, 107: 105956. DOI:10.1016/j.foodhyd.2020.105956.

[35]

ZHANG T, YUAN Y X, WU X L, et al. The level of sulfate substitution of polysaccharide regulates thermal-induced egg white protein gel properties: the characterization of gel structure and intermolecular forces[J]. Food Research International, 2023, 173: 113349. DOI:10.1016/j.foodres.2023.113349.

[36]

ESFAHANI M B, GOLI M, TOGHYANI M. Impact of egg white proteins modification by phosphorylation and ultrasound on its functional properties[J]. Journal of Food Measurement and Characterization, 2023, 17(5): 4253-4266. DOI:10.1007/s11694-023-01946-0.

[37]

LING Z T, AI M M, ZHOU Q, et al. Fabrication egg white gel hydrolysates-stabilized oil-in-water emulsion and characterization of its stability and digestibility[J]. Food Hydrocolloids, 2020, 102: 105621. DOI:10.1016/j.foodhyd.2019.105621.

[39]

HARIS P I, SEVERCAN F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 7(1/2/3/4): 207-221. DOI:10.1016/S1381-1177(99)00030-2.

[40]

SUREWICZ W K, MANTSCH H H, CHAPMAN D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment[J]. Biochemistry, 1993, 32(2): 389-394. DOI:10.1021/bi00053a001.

[41]

WEI W, HU W, ZHANG X Y, et al. Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging[J]. Scientific Reports, 2018, 8(1): 5566. DOI:10.1038/s41598-018-23645-3.

[42]

WU M G, CAO Y, LEI S M, et al. Protein structure and sulfhydryl group changes affected by protein gel properties: process of thermal-induced gel formation of myofibrillar protein[J]. International Journal of Food Properties, 2019, 22(1): 1834-1847. DOI:10.1080/10942912.2019.1656231.

[43]

MU Y Y, SUN J, OBADI M, et al. Effects of saccharides on the rheological and gelling properties and water mobility of egg white protein[J]. Food Hydrocolloids, 2020, 108: 106038. DOI:10.1016/j.foodhyd.2020.106038.

[44]

CHEN Y X, SHENG L, GOUDA M, et al. Studies on foaming and physicochemical properties of egg white during cold storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123916. DOI:10.1016/j.colsurfa.2019.123916.

[45]

LIU J B, CHAI J L, YUAN Y X, et al. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: structural, functional, and degradation properties[J]. Food Hydrocolloids, 2022, 122: 107094. DOI:10.1016/j.foodhyd.2021.107094.

[46]

ZHANG T, YUAN Y X, CHAI J L, et al. How does dextran sulfate promote the egg white protein to form transparent hydrogel? the gelation mechanism and molecular force changes[J]. Food Hydrocolloids, 2022, 133: 107901. DOI:10.1016/j.foodhyd.2022.107901.

[47]

MENG A, LUAN B Y, ZHANG W J, et al. Exploring changes in aggregation and gel network morphology of soybean protein isolate induced by pH, NaCl, and temperature in view of interactions[J]. International Journal of Biological Macromolecules, 2024, 273: 132911. DOI:10.1016/j.ijbiomac.2024.132911.

[48]

VISSCHERS R W, DE JONGH H H J. Disulphide bond formation in food protein aggregation and gelation[J]. Biotechnology Advances, 2005, 23(1): 75-80. DOI:10.1016/j.biotechadv.2004.09.005.

[49]

LI S, LIN S Y, JIANG P F, et al. The interaction mechanism of different ionic polysaccharides with myofibrillar protein and its contribution to the heat-induced gels[J]. Food Frontiers, 2024, 5(4): 1613-1628. DOI:10.1002/fft2.403.

[50]

CHEN B, LIU X Y, ZHOU K, et al. Differentiating the effects of hydrophobic interaction and disulfide bond on the myofibrillar protein emulsion gels at the high temperature and the protein interfacial properties[J]. Food Chemistry, 2023, 412: 135472. DOI:10.1016/j.foodchem.2023.135472.

[51]

OMANA D A, LIANG Y, KAV N N V, et al. Proteomic analysis of egg white proteins during storage[J]. Proteomics, 2011, 11(1): 144-153. DOI:10.1002/pmic.201000168.

[52]

HUANG Q, LIU L, WU Y Y, et al. Mechanism of differences in characteristics of thick/thin egg whites during storage: physicochemical, functional and molecular structure characteristics analysis[J]. Food Chemistry, 2022, 369: 130828. DOI:10.1016/j.foodchem.2021.130828.

[53]

LIU L, WANG J Q, WANG G Z, et al. Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning[J]. Food Chemistry, 2022, 392: 133320. DOI:10.1016/j.foodchem.2022.133320.

[54]

HUNTINGTON J A, STEIN P E. Structure and properties of ovalbumin[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2001, 756(1/2): 189-198. DOI:10.1016/S0378-4347(01)00108-6.

[55]

HUANG Q, QIU N, MA M H, et al. Estimation of egg freshness using S-ovalbumin as an indicator[J]. Poultry Science, 2012, 91(3): 739-743. DOI:10.3382/ps.2011-01639.

[56]

EGELANDSDAL B. Heat-induced gelling in solutions of ovalbumin[J]. Journal of Food Science, 1980, 45(3): 570-574. DOI:10.1111/j.1365-2621.1980.tb04103.x.

[57]

WU J P, ACERO-LOPEZ A. Ovotransferrin: structure, bioactivities, and preparation[J]. Food Research International, 2012, 46(2): 480-487. DOI:10.1016/j.foodres.2011.07.012.

[58]

LIU Q, WANG Q, HE P, et al. Heat-induced gel properties and gastrointestinal digestive properties of egg white produced by hens fed with selenium-enriched yeast[J]. Food Chemistry, 2022, 366: 130712. DOI:10.1016/j.foodchem.2021.130712.

[59]

OMANA D A, WANG J P, WU J P. Ovomucin: a glycoprotein with promising potential[J]. Trends in Food Science & Technology, 2010, 21(9): 455-463. DOI:10.1016/j.tifs.2010.07.001.

[60]

XUE H, HAN T F, ZHANG G W, et al. Combined effects of NaOH, NaCl, and heat on the characteristics of ovalbumin gel and the exploration of the mechanism of transparent gel formation[J]. Food Hydrocolloids, 2023, 140: 108589. DOI:10.1016/j.foodhyd.2023.108589.

[61]

SHAN Y Y, TANG D Y, WANG R, et al. Rheological and structural properties of ovomucin from chicken eggs with different interior quality[J]. Food Hydrocolloids, 2020, 100: 105393. DOI:10.1016/j.foodhyd.2019.105393.

[62]

LIU X, WANG J Q, LIU L L, et al. Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties[J]. Food Chemistry, 2021, 342: 128252. DOI:10.1016/j.foodchem.2020.128252.

[63]

WANG X L, HU G, WANG X M, et al. Quantitative proteomics provides new insights into the mechanism of improving rehydration of egg white powder by ultrasonic pretreatment[J]. International Journal of Biological Macromolecules, 2023, 253: 127497. DOI:10.1016/j.ijbiomac.2023.127497.

[65]

MAO Y Z, HUANG M, BI J P, et al. Effects of kappa-carrageenan on egg white ovalbumin for enhancing the gelation and rheological properties via electrostatic interactions[J]. Food Hydrocolloids, 2023, 134: 108031. DOI:10.1016/j.foodhyd.2022.108031.

[66]

LEE S, JO K, JEONG S K C, et al. Heat-induced gelation of egg white proteins depending on heating temperature: insights into protein structure and digestive behaviors in the elderly in vitro digestion model[J]. International Journal of Biological Macromolecules, 2024, 262: 130053. DOI:10.1016/j.ijbiomac.2024.130053.

[67]

MINE Y. Recent advances in the understanding of egg white protein functionality[J]. Trends in Food Science & Technology, 1995, 6(7): 225-232. DOI:10.1016/S0924-2244(00)89083-4.

[68]

WANG J Q, LIU X, LI S G, et al. Ovomucin may be the key protein involved in the early formation of egg-white thermal gel[J]. Food Chemistry, 2022, 366: 130596. DOI:10.1016/j.foodchem.2021.130596.

[69]

PU J, ZHAO B Y, LIU X, et al. Quantitative proteomic analysis of chicken egg white and its components[J]. Food Research International, 2023, 170: 113019. DOI:10.1016/j.foodres.2023.113019.

[70]

XIAO J, WANG J Q, CHENG L, et al. A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane[J]. International Journal of Biological Macromolecules, 2020, 164: 3125-3132. DOI:10.1016/j.ijbiomac.2020.08.193.

[71]

LIU X, ZHANG Z W, CHEN Y J, et al. Chain reactions of temperature-induced egg white protein amorphous aggregates: formation, structure and material composition of thermal gels[J]. Food Chemistry, 2024, 460: 140785. DOI:10.1016/j.foodchem.2024.140785.

Food Science
Pages 281-291
Cite this article:
XIANG C, ZHONG M, HUO J, et al. Effects of Storage Conditions on Gel Characteristics of Soft-Boiled Egg White and Underlying Mechanisms. Food Science, 2025, 46(5): 281-291. https://doi.org/10.7506/spkx1002-6630-20240731-302
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return