In this study, the effects and underlying mechanisms of storage conditions on the gel properties of soft-boiled egg white prepared from fresh eggs stored at 4 or 25 ℃ for 0-12 days were investigated. The results showed that the texture properties, β-sheet content, and disulfide bond content of egg white gel initially increased and subsequently decreased with storage time, reaching the highest values after 9 days. Disulfide bonds served as the major intermolecular force. Compared with those of fresh samples, the resilience, springiness, β-sheet content, and disulfide bond content of softboiled egg white gels from eggs stored for 9 days increased by 16.7%, 29.9%, 16.1% and 22.1% for 4 ℃, and by 34.7%, 32.4%, 30.4% and 25.7% for 25 ℃, respectively, and the microstructure of the samples stored at 25 ℃ for 9 days was more uniform and compact, so it had the best gel properties. Proteomics analysis showed that the abundance of mucin 5B in the 25 ℃/9 days group was 6.4 and 11.4 times higher than that of the 4 ℃/9 days group and the fresh sample, respectively. which may account for its enhanced thermogel properties.
ZANG J W, ZHANG Y Y, PAN X Y, et al. Advances in the formation mechanism, influencing factors and applications of egg white gels: a review[J]. Trends in Food Science & Technology, 2023, 138: 417-432. DOI:10.1016/j.tifs.2023.06.025.
QIU N, MA M H, ZHAO L, et al. Comparative proteomic analysis of egg white proteins under various storage temperatures[J]. Journal of Agricultural and Food Chemistry, 2012, 60(31): 7746-7753. DOI:10.1021/jf302100m.
LI G, MI S Y, ZENG Q, et al. Quantitative proteomics provides insights into the mechanism of the differences in heat-induced gel properties for egg white proteins with different interior quality during ageing in laying hens[J]. Food Chemistry, 2023, 419: 136031. DOI:10.1016/j.foodchem.2023.136031.
ILLERA A E, SOUZA V R, TANG L Y, et al. Effect of high voltage atmospheric cold plasma on chicken eggs quality during refrigerated storage[J]. Food Bioscience, 2023, 53: 102754. DOI:10.1016/j.fbio.2023.102754.
MELLOR D B, GARDNER F A, CAMPOS E J. Effect of type of package and storage temperature on interior quality of shell treated shell eggs[J]. Poultry Science, 1975, 54(3): 742-746. DOI:10.3382/ps.0540742.
GOODRUM J W, BRITTON W M, DAVIS J B. Effect of storage conditions on albumen pH and subsequent hard-cooked egg peelability and albumen shear strength[J]. Poultry Science, 1989, 68(9): 1226-1231. DOI:10.3382/ps.0681226.
FULLER G W, ANGUS P. Peelability of hard-cooked eggs[J]. Poultry Science, 1969, 48(4): 1145-1151. DOI:10.3382/ps.0481145.
REINKE W C, SPENCER J V, TRYHNEW L J. The effect of storage upon the chemical, physical and functional properties of chicken eggs[J]. Poultry Science, 1973, 52(2): 692-702. DOI:10.3382/ps.0520692.
LI J H, ZHANG W J, TANG T T, et al. Thermal gelation and digestion properties of hen egg white: study on the effect of neutral and alkaline salts addition[J]. Food Chemistry, 2023, 409: 135263. DOI:10.1016/j.foodchem.2022.135263.
XUE H, TU Y G, ZHANG G W, et al. Mechanism of ultrasound and tea polyphenol assisted ultrasound modification of egg white protein gel[J]. Ultrasonics Sonochemistry, 2021, 81: 105857. DOI:10.1016/j.ultsonch.2021.105857.
LIU X, MA L L, ZHONG M Z, et al. Formation mechanism of high-viscosity gelatinous egg white among “Fenghuang egg”: phenomenon, structure, and substance composition[J]. International Journal of Biological Macromolecules, 2022, 217: 803-813. DOI:10.1016/j.ijbiomac.2022.07.089.
JIN H B, CHEN J H, ZHANG J, et al. Impact of phosphates on heat-induced egg white gel properties: texture, water state, micro-rheology and microstructure[J]. Food Hydrocolloids, 2021, 110: 106200. DOI:10.1016/j.foodhyd.2020.106200.
TAN J E, DENG C Y, YAO Y, et al. Regulation of different copper salts on alkali-induced egg white gels: physicochemical characteristics, microstructure and protein conformation[J]. Food Chemistry, 2024, 435: 137346. DOI:10.1016/j.foodchem.2023.137346.
XUE H, XU M, ZHANG G W, et al. Study on the mechanism of enhanced gel strength of heat-induced egg white by shikimic acid braising[J]. Poultry Science, 2022, 101(5): 101774. DOI:10.1016/j.psj.2022.101774.
CHEN R, JIN H B, PAN J J, et al. Underlying mechanisms of egg white thinning in hot spring eggs during storage: weak gel properties and quantitative proteome analysis[J]. Food Research International, 2023, 172: 113157. DOI:10.1016/j.foodres.2023.113157.
XIA M Q, ZHAO Q N, ISOBE K, et al. Lysozyme impacts gel properties of egg white protein via electrostatic interactions, polarity differences, local pH regulation, or as a filler[J]. International Journal of Biological Macromolecules, 2022, 223: 1727-1736. DOI:10.1016/j.ijbiomac.2022.10.101.
LIU X, WANG J Q, HUANG Q, et al. Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: gel properties, structure and quantitative proteome analysis[J]. Food Hydrocolloids, 2020, 106: 105873. DOI:10.1016/j.foodhyd.2020.105873.
DA SILVA PIRES P G, DA SILVA PIRES P D, CARDINAL K M, et al. The use of coatings in eggs: a systematic review[J]. Trends in Food Science & Technology, 2020, 106: 312-321. DOI:10.1016/j.tifs.2020.10.019.
LI L, REN S J, YANG H, et al. Study of the molecular structure of proteins in eggs under different storage conditions[J]. Journal of Food Processing and Preservation, 2023, 2023: 4754074. DOI:10.1155/2023/4754074.
ABOONAJMI M, NAJAFABADI T A. Prediction of poultry egg freshness using Vis-Nir spectroscopy with maximum likelihood method[J]. International Journal of Food Properties, 2014, 17(10): 2166-2176. DOI:10.1080/10942912.2013.784330.
TAN W, ZHANG Q J, YANG L, et al. Actual time determination of egg freshness: a centroid rate based approach[J]. Food Packaging and Shelf Life, 2020, 26: 100574. DOI:10.1016/j.fpsl.2020.100574.
LIU Y D, YING Y B, OUYANG A G, et al. Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology[J]. Food Control, 2007, 18(1): 18-22. DOI:10.1016/j.foodcont.2005.07.011.
YIMENU S M, KIM J Y, KIM B S. Prediction of egg freshness during storage using electronic nose[J]. Poultry Science, 2017, 96(10): 3733-3746. DOI:10.3382/ps/pex193.
WANG J Q, XIAO J, LIU X, et al. Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs[J]. Meat Science, 2021, 172: 108343. DOI:10.1016/j.meatsci.2020.108343.
SCOTT T A, SILVERSIDES F G. The effect of storage and strain of hen on egg quality[J]. Poultry Science, 2000, 79(12): 1725-1729. DOI:10.1093/ps/79.12.1725.
WENGERSKA K, BATKOWSKA J, DRABIK K. The eggshell defect as a factor affecting the egg quality after storage[J]. Poultry Science, 2023, 102(7): 102749. DOI:10.1016/j.psj.2023.102749.
DE ARAÚJO SOARES R, BORGES S V, DIAS M V, et al. Impact of whey protein isolate/sodium montmorillonite/sodium metabisulfite coating on the shelf life of fresh eggs during storage[J]. LWT-Food Science and Technology, 2021, 139: 110611. DOI:10.1016/j.lwt.2020.110611.
XUE H, XU M, LIAO M F, et al. Effects of tea and Illicium verum braise on physicochemical characteristics, microstructure, and molecular structure of heat-induced egg white protein gel[J]. Food Hydrocolloids, 2021, 110: 106181. DOI:10.1016/j.foodhyd.2020.106181.
HAMMERSHØJ M, LARSEN L B, ANDERSEN A B, et al. Storage of shell eggs influences the albumen gelling properties[J]. LWT-Food Science and Technololy, 2002, 35(1): 62-69. DOI:10.1006/fstl.2001.0811.
MINE Y. Effect of dry heat and mild alkaline treatment on functional properties of egg white proteins[J]. Journal of Agricultural and Food Chemistry, 1997, 45(8): 2924-2928. DOI:10.1021/jf970158b.
DENG C Y, SHAO Y Y, XU M S, et al. Effects of metal ions on the physico-chemical, microstructural and digestion characteristics of alkali-induced egg white gel[J]. Food Hydrocolloids, 2020, 107: 105956. DOI:10.1016/j.foodhyd.2020.105956.
ZHANG T, YUAN Y X, WU X L, et al. The level of sulfate substitution of polysaccharide regulates thermal-induced egg white protein gel properties: the characterization of gel structure and intermolecular forces[J]. Food Research International, 2023, 173: 113349. DOI:10.1016/j.foodres.2023.113349.
ESFAHANI M B, GOLI M, TOGHYANI M. Impact of egg white proteins modification by phosphorylation and ultrasound on its functional properties[J]. Journal of Food Measurement and Characterization, 2023, 17(5): 4253-4266. DOI:10.1007/s11694-023-01946-0.
LING Z T, AI M M, ZHOU Q, et al. Fabrication egg white gel hydrolysates-stabilized oil-in-water emulsion and characterization of its stability and digestibility[J]. Food Hydrocolloids, 2020, 102: 105621. DOI:10.1016/j.foodhyd.2019.105621.
HARIS P I, SEVERCAN F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 7(1/2/3/4): 207-221. DOI:10.1016/S1381-1177(99)00030-2.
SUREWICZ W K, MANTSCH H H, CHAPMAN D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment[J]. Biochemistry, 1993, 32(2): 389-394. DOI:10.1021/bi00053a001.
WEI W, HU W, ZHANG X Y, et al. Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging[J]. Scientific Reports, 2018, 8(1): 5566. DOI:10.1038/s41598-018-23645-3.
WU M G, CAO Y, LEI S M, et al. Protein structure and sulfhydryl group changes affected by protein gel properties: process of thermal-induced gel formation of myofibrillar protein[J]. International Journal of Food Properties, 2019, 22(1): 1834-1847. DOI:10.1080/10942912.2019.1656231.
MU Y Y, SUN J, OBADI M, et al. Effects of saccharides on the rheological and gelling properties and water mobility of egg white protein[J]. Food Hydrocolloids, 2020, 108: 106038. DOI:10.1016/j.foodhyd.2020.106038.
CHEN Y X, SHENG L, GOUDA M, et al. Studies on foaming and physicochemical properties of egg white during cold storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123916. DOI:10.1016/j.colsurfa.2019.123916.
LIU J B, CHAI J L, YUAN Y X, et al. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: structural, functional, and degradation properties[J]. Food Hydrocolloids, 2022, 122: 107094. DOI:10.1016/j.foodhyd.2021.107094.
ZHANG T, YUAN Y X, CHAI J L, et al. How does dextran sulfate promote the egg white protein to form transparent hydrogel? the gelation mechanism and molecular force changes[J]. Food Hydrocolloids, 2022, 133: 107901. DOI:10.1016/j.foodhyd.2022.107901.
MENG A, LUAN B Y, ZHANG W J, et al. Exploring changes in aggregation and gel network morphology of soybean protein isolate induced by pH, NaCl, and temperature in view of interactions[J]. International Journal of Biological Macromolecules, 2024, 273: 132911. DOI:10.1016/j.ijbiomac.2024.132911.
VISSCHERS R W, DE JONGH H H J. Disulphide bond formation in food protein aggregation and gelation[J]. Biotechnology Advances, 2005, 23(1): 75-80. DOI:10.1016/j.biotechadv.2004.09.005.
LI S, LIN S Y, JIANG P F, et al. The interaction mechanism of different ionic polysaccharides with myofibrillar protein and its contribution to the heat-induced gels[J]. Food Frontiers, 2024, 5(4): 1613-1628. DOI:10.1002/fft2.403.
CHEN B, LIU X Y, ZHOU K, et al. Differentiating the effects of hydrophobic interaction and disulfide bond on the myofibrillar protein emulsion gels at the high temperature and the protein interfacial properties[J]. Food Chemistry, 2023, 412: 135472. DOI:10.1016/j.foodchem.2023.135472.
OMANA D A, LIANG Y, KAV N N V, et al. Proteomic analysis of egg white proteins during storage[J]. Proteomics, 2011, 11(1): 144-153. DOI:10.1002/pmic.201000168.
HUANG Q, LIU L, WU Y Y, et al. Mechanism of differences in characteristics of thick/thin egg whites during storage: physicochemical, functional and molecular structure characteristics analysis[J]. Food Chemistry, 2022, 369: 130828. DOI:10.1016/j.foodchem.2021.130828.
LIU L, WANG J Q, WANG G Z, et al. Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning[J]. Food Chemistry, 2022, 392: 133320. DOI:10.1016/j.foodchem.2022.133320.
HUNTINGTON J A, STEIN P E. Structure and properties of ovalbumin[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2001, 756(1/2): 189-198. DOI:10.1016/S0378-4347(01)00108-6.
HUANG Q, QIU N, MA M H, et al. Estimation of egg freshness using S-ovalbumin as an indicator[J]. Poultry Science, 2012, 91(3): 739-743. DOI:10.3382/ps.2011-01639.
EGELANDSDAL B. Heat-induced gelling in solutions of ovalbumin[J]. Journal of Food Science, 1980, 45(3): 570-574. DOI:10.1111/j.1365-2621.1980.tb04103.x.
WU J P, ACERO-LOPEZ A. Ovotransferrin: structure, bioactivities, and preparation[J]. Food Research International, 2012, 46(2): 480-487. DOI:10.1016/j.foodres.2011.07.012.
LIU Q, WANG Q, HE P, et al. Heat-induced gel properties and gastrointestinal digestive properties of egg white produced by hens fed with selenium-enriched yeast[J]. Food Chemistry, 2022, 366: 130712. DOI:10.1016/j.foodchem.2021.130712.
OMANA D A, WANG J P, WU J P. Ovomucin: a glycoprotein with promising potential[J]. Trends in Food Science & Technology, 2010, 21(9): 455-463. DOI:10.1016/j.tifs.2010.07.001.
XUE H, HAN T F, ZHANG G W, et al. Combined effects of NaOH, NaCl, and heat on the characteristics of ovalbumin gel and the exploration of the mechanism of transparent gel formation[J]. Food Hydrocolloids, 2023, 140: 108589. DOI:10.1016/j.foodhyd.2023.108589.
SHAN Y Y, TANG D Y, WANG R, et al. Rheological and structural properties of ovomucin from chicken eggs with different interior quality[J]. Food Hydrocolloids, 2020, 100: 105393. DOI:10.1016/j.foodhyd.2019.105393.
LIU X, WANG J Q, LIU L L, et al. Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties[J]. Food Chemistry, 2021, 342: 128252. DOI:10.1016/j.foodchem.2020.128252.
WANG X L, HU G, WANG X M, et al. Quantitative proteomics provides new insights into the mechanism of improving rehydration of egg white powder by ultrasonic pretreatment[J]. International Journal of Biological Macromolecules, 2023, 253: 127497. DOI:10.1016/j.ijbiomac.2023.127497.
MAO Y Z, HUANG M, BI J P, et al. Effects of kappa-carrageenan on egg white ovalbumin for enhancing the gelation and rheological properties via electrostatic interactions[J]. Food Hydrocolloids, 2023, 134: 108031. DOI:10.1016/j.foodhyd.2022.108031.
LEE S, JO K, JEONG S K C, et al. Heat-induced gelation of egg white proteins depending on heating temperature: insights into protein structure and digestive behaviors in the elderly in vitro digestion model[J]. International Journal of Biological Macromolecules, 2024, 262: 130053. DOI:10.1016/j.ijbiomac.2024.130053.
MINE Y. Recent advances in the understanding of egg white protein functionality[J]. Trends in Food Science & Technology, 1995, 6(7): 225-232. DOI:10.1016/S0924-2244(00)89083-4.
WANG J Q, LIU X, LI S G, et al. Ovomucin may be the key protein involved in the early formation of egg-white thermal gel[J]. Food Chemistry, 2022, 366: 130596. DOI:10.1016/j.foodchem.2021.130596.
PU J, ZHAO B Y, LIU X, et al. Quantitative proteomic analysis of chicken egg white and its components[J]. Food Research International, 2023, 170: 113019. DOI:10.1016/j.foodres.2023.113019.
XIAO J, WANG J Q, CHENG L, et al. A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane[J]. International Journal of Biological Macromolecules, 2020, 164: 3125-3132. DOI:10.1016/j.ijbiomac.2020.08.193.
LIU X, ZHANG Z W, CHEN Y J, et al. Chain reactions of temperature-induced egg white protein amorphous aggregates: formation, structure and material composition of thermal gels[J]. Food Chemistry, 2024, 460: 140785. DOI:10.1016/j.foodchem.2024.140785.