PDF (16.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Influence of blade multi-scale surface on aerodynamic performance of compressor and its high-performance manufacturing: A review

Dinghua ZHANG1,2Zhiwei HE1,2Xuebao ZHANG3Ming LUO1,2()
Key Laboratory of High Performance Manufacturing for Aero-engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072, China
Engineering Research Center of Aero-engine Advanced Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
Show Author Information

Abstract

Blade geometry error refinement control, surface corrugation control and reasonable arrangement of meso-microscopic bionic drag reduction structure are effective means to improve the aerodynamic performance of aero-engine compressor blades, and is also currently one of the key focuses of thenext generation of aero-engines. These structures usually have complex geometries and are difficult to manufacture. In this paper, we firstly review the changes of different scale surface features, such as blade geometry error, waviness and meso-microscopic bionic drag reduction structure, on the flow field characteristics, as well as the influence of different scale surface structural features on the aerodynamic performance of compressor, and analyze the manufacturing process of multi-scale surfaces and its latest progress. Secondly, the requirements for geometric shape tolerance range, waviness and meso-microscopic bionic structure manufacturing technology in the high-performance manufacturing of compressor blades under aerodynamic performance constraints are introduced. Finally, the research content and development direction for further enhancing the aerodynamic performance of compressor blades are prospected in the light of the current development of high-performance manufacturing of multi-scale surfaces.

CLC number: V232.4 Document code: A

References

1
WEN Q, MA N, NAN X. Development trend of aero engine fan and compressor technology [J]. Aerospace Power, 2020 (2): 42-46 (in Chinese).
2
CHU W L, JI T Y, Chen X G, et al. Mechanism analysis and uncertainty quantification of blade thickness deviation on rotor performance [J]. Journal of Power and Energy, 2023, 237 (6): 1188-1202.
3
GUO Z T, CHU W L, ZHANG H G, et al. Aerodynamic evaluation of cascade flow with actual geometric uncertainties using an adaptive sparse arbitrary polynomial chaos expansion [J]. Physics of Fluids, 2023, 35 (3): 036122.
4
ZHANG Q, XU S R, YU X J, et al. Nonlinear uncertainty quantification of the impact of geometric variability on compressor performance using an adjoint method [J]. Chinese Journal of Aeronautics, 2022, 35 (2): 17-21.
5
Gas Turbine Establishment. Marking, tolerances and surface roughness of the leaf blade: HB5647-1998 [S]. Beijing: Aviation Industry Corporation of China, 1998 (in Chinese).
6
GREINER D, GALVAN B, PERIAUX J, et al. Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences [M]. 2015: 45-86.
7
SUN P P, LI W, HU W Y. Application of bionics in aero engines [J]. Aerospace Power, 2018 (5): 12-15 (in Chinese).
8
ROBERTS W B. Advanced turbofan blade refurbishment technique [J]. Journal of Turbomachinery, 1995, 117 (4): 666-667.
9
GAO L M, YANG G, WANG H H, et al. Effect of waviness deviation on the blade profile of the high-load compressor [J]. Journal of Xi’an Jiaotong University, 2023, 57 (3): 117-128 (in Chinese).
10
ZHANG C, KOIRALA S B. Investigation on drag reduction performance of aero engine blade with micro-texture [J]. Aerospace Science and Technology, 2018, 72: 380-396.
11
SHAO W B, HU B, LI X S, et al. Impact of manufacturing variations on aerodynamic performance of compressor blade [J]. Equipment Environmental Engineering, 2023, 20 (1): 22-29 (in Chinese).
12
CHENG C, WU B H, ZHENG H, et al. Effect of blade machining errors on compressor performance [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (2): 623237 (in Chinese).
13
ZENG R H, GAO L M, YANG G H, et al. Study on the application of laminar blades in compressors [J]. Journal of Engineering Thermophysics, 2017, 38 (11): 2348-2356 (in Chinese).
14
YANG G H, GAO L M, WANG H H, et al. Asymmetric leading edge design of compressor cascades based on NURBS [J]. Journal of Aeronautical Power, 2021, 36 (3): 655-663 (in Chinese).
15
ELMSTROM M E, MILLSAPS K T, HOBSON G V, et al. Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils [J]. Journal of Turbomachinery, 2011, 133 (4): 041004.
16
WHEELER A P, SOFIA A, MILLER R J. The effect of leading-edge geometry on wake interactions in compressors [J]. Journal of Turbomachinery, 2009, 131 (4): 041013.
17
SHI G H. Mechanism of the effect of blade tip cutting at the rotor trailing edge on stall margin in an axial compressor [J]. Fluid Machinery, 2023, 51 (5): 70-76 (in Chinese).
18
SCHNELL R, LENGYEL K T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics [J]. Journal of Turbomachinery, 2014, 136 (9): 091005.
19
REID L, URASEK D C. Experimental evaluation of the effects of a blunt leading edge on the performance of a transonic rotor [J]. Journal of Engineering for Gas Turbines and Power, 1973, 95 (3): 199-204.
20
ROBERTS W B. Axial Compressor performance restoration by blade profile control: 84-GT-232, V001T01A063 [R]. Amsterdam: International Gas Turbine Institute, 1984.
21
TUCK E. A criterion for leading-edge separation [J]. Journal of Fluid Mechanics, 1991, 222: 33-37.
22
WALRAEVENS R E, CUMPSTY N A. Leading edge separation bubbles on turbomachine blades [J]. Journal of Turbomachinery, 1995, 117: 115-125.
23
TAIN L. Compressor leading edges in incompressible and compressible flows [D]. Cambridge: University of Cambridge, 1998: 38-46.
24
LIU H, LIU B, LI L, et al. Effect of leading-edge geometry on separation bubble on a compressor blade: GT2003-38217 [R]. Atlanta: ASME, 2003.
25
GIEBMANNS A, SCHNELL R, STEINERT W, et al. Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements: GT2012-69064 [R]. Copenhagen: ASME, 2012.
26
GIEBMANNS A, BACKHAUS J, FREY C, et al. Compressor leading edge sensitivities and analysis with an adjoint flow solver: GT2013-94427, V06AT35A009 [R]. San Antonio: ASME, 2013.
27
GOODHAND M N, MILLER R J, HANG W L. The impact of geometric variation on compressor two-dimensional incidence range [J]. Journal of Turbomachinery, 2015, 137 (2): 021007.
28
CARTER A D. Blade profiles for axial-flow fans, pumps, compressors, etc [J]. Proceedings of the Institution of Mechanical Engineers, 1961, 175 (1): 775-806.
29
LI P. Effect of blade machining error and data transfer on compressor aerodynamic performance [D]. Xi’an: Northwestern Polytechnical University, 2015: 27-34 (in Chinese).
30
ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance [J]. Journal of Mechanical Engineering, 2018, 54 (2): 216-224 (in Chinese).
31
GENG S J, ZHANG X Y, DING L C, et al. Effects of rotor blade manufacturing variability on 1.5 stage transonic compressor aerodynamic performance [J]. Journal of Propulsion Technology, 2021, 42 (1): 139-148 (in Chinese).
32
CHEN Z Y, GENG S J, LIU S P, et al. Effects of profile variability on aerodynamic performance of supersonic compressor cascade [J]. Chinese Journal of Ship Research, (2023-06-15) [2023-12-23]. https://doi.org/10.19693/j.issn.1673-3185.03300.
33
LEBELE-ALAWA B T, HART H I, OGAJI S O, et al. Rotor-blades’ profile influence on a gas-turbine’s compressor effectiveness [J]. Applied Energy, 2008, 85 (6): 494-505.
34
ZHENG S Y. Impact of manufacturing tolerance of compressor blade on aerodynamic performance [D]. Shanghai: Shanghai Jiao Tong University, 2019: 23-24 (in Chinese).
35
DIMITRIOS I P, COSTAS P. Aerodynamic shape optimization for minimum robust drag and lift reliability constraint [J]. Aerospace Science and Technology, 2016, 55 (13): 24-33.
36
KLAPPROTH J. Approximate relative total pressure losses of an infinite cascade of supersonic blades with finite leading-edge thickness: NACA-RM-E9L21 [R]. 1950.
37
ROBERTS W, ARMIN A, KASSASEYA G, et al. The effect of variable chord length on transonic axial rotor performance [J]. Journal of Turbomachinery, 2002, 124 (3): 351-357.
38
REITZ G, SCHLANGE S, FRIEDRICHS J. Design of experiments and numerical simulation of deteriorated high pressure compressor airfoils: GT2016-56024, V02AT37A002 [R]. Seoul: ASME, 2016.
39
ZHEN S Y, TENG J F, QIANG X Q. Numerical investigation of profile variability on axial compressor flow field performance [J]. Science Technology and Engineering, 2016, 16 (29): 317-320 (in Chinese).
40
ZHENG S Y, TENG J F, QIANG X Q. Numerical investigation of positional variability on axial compressor flow field performance [J]. Fluid Machinery, 2016, 44 (11): 20-24 (in Chinese).
41
ZHENG S Y, TENG J F, QIANG X Q. Numerical research of twisted variability on axial compressor performance [J]. Energy Conservation Technology, 2017, 35 (2): 99-102, 112 (in Chinese).
42
YU X J, PANG J, LIU B J. The application of flow-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance [J]. Journal of Engineering Thermophysics, 2018, 39 (7): 1436-1446 (in Chinese).
43
WANG J, ZHENG X. Review of geometric uncertainty quantification in gas turbines [J]. Journal of Engineering for Gas Turbines and Power, 2020, 142 (7): 070801.
44
GARZON V E. Probabilistic aerothermal design of compressor airfoils [D]. Cambridge: Massachusetts Institute of Technology, 2003: 81-96.
45
HEINZE K, FRIEDL W H, VOGELER K, et al. Probabilistic HCF-Investigation of compressor blade: GT2009-59899 [R]. Orlando: ASME, 2009.
46
GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance [J]. Journal of Turbomachinery, 2003, 125 (4): 692-703.
47
LANGE A, VOGELER K GÜMMER V, et al. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation: GT2009-59937 [R]. Orlando: ASME, 2009.
48
LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account: GT2010-22484 [R]. Glasgow: ASME, 2010.
49
LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance [J]. Journal of Engineering for Gas Turbines and Power, 2012, 134 (11): 112601.
50
WIENER N. The homogeneous chaos [J]. American Journal of Mathematics, 1938, 60 (13): 897-936.
51
CAMERON R H, MARTIN W T. The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals [J]. Annals of Mathematics, 1947, 48 (2): 385-392.
52
GUO Z T, CHU W L, YAN S, et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade [J]. Journal of Propulsion Technology, 2022, 43 (3): 133-145 (in Chinese).
53
JI T Y, CHU W L, DAI Y C, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic Performance [J]. Journal of Propulsion Technology, 2022, 43 (10): 134-146 (in Chinese).
54
BERT J D, HABIB N, PHILIPPE P, et al. Numerical challenges in the use of polynomial chaos representations for stochastic processes [J]. SIAM Journal on Scientific Computing, 2004, 26 (2): 698-719.
55
LOEVEN G, WITTEVEEN J, BIJL H. Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties [C] //45th AIAA Aerospace Sciences Meeting. 2007: 3845-3858.
56
PARUSSINI L, PEDIRODA V. Investigation of multi geometric uncertainties by different polynomial chaos methodologies using a fictitious domain solver [J]. Computer Modeling in Engineering and Sciences, 2008, 23: 29-51.
57
ZHAO K, GAO Z H, HUANG J T. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46 (1): 10-19 (in Chinese).
58
WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design: GT2015-43399 [R]. Montreal: ASME, 2015.
59
CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method [J]. Journal of Engineering Thermophysics, 2017, 38 (3): 490-497 (in Chinese).
60
GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance [J]. Journal of Propulsion Technology, 2017, 38 (3): 525-531 (in Chinese).
61
GAO L M, CAI Y T, XU H L, et al. Uncertainty analysis of machining error influence of compressor blade [J]. Journal of Aerospace Power, 2017, 32 (9): 2253-2259 (in Chinese).
62
TENG X, CHU W L, ZHANG H G, et al. The influence of geometry deformation on a multistage compressor: GT2018-75935 [R]. Oslo: ASME, 2018.
63
MA C, GAO L, WANG H, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades [J]. Chinese Journal of Aeronautics, 2021, 34 (6): 220-232.
64
LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method [J]. Aerospace Science and Technology, 2018, 77: 471-484.
65
DAROCZY L, JANIGA G, THEVENIN D. Analysis of the performance of a H-Darrieus rotor under uncertainty using polynomial chaos expansion [J]. Energy, 2016, 113 (30): 399-412.
66
MA C, GAO L M, CAI Y T. Robust optimization design of compressor blade considering machining error: GT2017-63157 [R]. Charlotte: ASME, 2017.
67
WANG K, CHEN F, YU J Y. Nested sparse-grid stochastic collocation method for uncertainty quantification of blade stagger angle [J]. Energy, 2020, 201: 117583.
68
SMOLYAK S. A. Quadrature and interpolation formulas for tensor products of certain classes of functions [J]. Doklady Akademii Nauk SSSR, 1963, 4 (5): 240-243.
69
BLATMAN G, SUDRET B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis [J]. Probabilistic Engineering Mechanics, 2010, 25 (2): 183-197.
70
XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method [J]. Aerospace Science and Technology, 2019, 90: 127-139.
71
LIU Y M, QIN R H, JU Y P, et al. Impact of realistic manufacturing uncertainties on the aerodynamic performance of a transonic centrifugal impeller: GT2020-14784, V02DT38A012 [R]. Virtual: ASME, 2020.
72
GUO Z T, CHU W L. Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method [J]. Journal of Mechanical Engineering Science, 2022, 236 (10): 5719-5735.
73
JU Y P, LIU Y M, JIANG W, et al. Aerodynamic analysis and design optimization of a centrifugal compressor impeller considering realistic manufacturing uncertainties [J]. Aerospace Science and Technology, 2021, 115: 106787.
74
GUO L, LIU Y L, ZHOU T. Data-driven polynomial chaos expansions: a weighted least-square approximation [J]. Journal of Computational Physics, 2019, 381: 129-145.
75
AHLFELD R, MONTOMOLI F. A single formulation for uncertainty propagation in turbomachinery: SAMBA PC [J]. Journal of Turbomachinery, 2017, 139 (11): 111007.
76
GUO Z T, CHU W L, ZHANG H G. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors [J]. Aerospace Science and Technology, 2022, 129: 107802.
77
SIVIA D. Data Analysis: A Bayesian Tutorial [M]. Oxford: Oxford University Press, 2006: 153-164.
78
SAYLOR P E, SMOLARSKI D C. Computing the roots of complex orthogonal and kernel polynomials [J]. SIAM Journal on Scientific Computing, 1988, 9 (1): 1-13.
79
LEJON M, ANDERSSON N, ELLBRANT L, et al. The impact of manufacturing variations on performance of a transonic axial compressor rotor [J]. Journal of Turbomachinery, 2020, 142 (8): 081009.
80
LOU F Y, DOUGLAS R, MATTHEWS, NICHOLAS J, et al. Accounting for circumferential flow nonuniformity in a multistage axial compressor [J]. Journal of Turbomachinery, 2023, 145 (7): 071016.
81
RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts [J]. International Journal of Machine Tools and Manufacture, 2004, 44 (15): 1629-1641.
82
WAN M, ZHANG W H, QIU K P, et al. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes [J]. Journal of Manufacturing Science and Engineering, 2005, 127: 13-22.
83
LAZOGLU I, MAMEDOV A. Deformation of thin parts in micro milling [J]. CIRP Annals-Manufacturing Technology, 2016, 65: 117-120.
84
LI Z L, TUYSUZ O, ZHU L M, et al. Surface form error prediction in five-axis flank milling of thin-walled parts [J]. International Journal of Machine Tools and Manufacture, 2018, 128: 21-32.
85
ANNONI M, REBAIOLI L, SEMERARO Q. Thin wall geometrical quality improvement in micro milling [J]. The International Journal of Advanced Manufacturing Technology, 2015, 79: 881-895.
86
CAO L, ZHANG X M, HUANG T, et al. Online monitoring machining errors of thin-walled workpiece: a knowledge embedded sparse Bayesian regression approach [J]. IEEE/ASME Transactions on Mechatronic, 2019, 24 (3): 1259-1270.
87
DITTRICH M A, UHLICH F, DENKENA B. Self-optimizing tool path generation for 5-axis machining processes [J]. CIRP Journal of Manufacturing Science and Technology, 2019, 24: 49-54.
88
ZHANG Z, QI Y, CHENG Q, et al. Machining accuracy reliability during the peripheral milling process of thin-walled components [J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 22234.
89
SUN H, PENG F Y, ZHOU L, et al. A hybrid driven approach to integrate surrogate model and Bayesian framework for the prediction of machining errors of thin-walled parts [J]. International Journal of Mechanical Sciences, 2021, 192: 106111.
90
LI R Y, WANG S H, WANG C, et al. Research into dynamic error optimization method of impeller blade machining based on digital-twin technology [J]. Machines, 2023, 11 (7): 697-722.
91
LO C C, HSIAO C Y. A method of tool path compensation for repeated machining process [J]. International Journal of Machine Tools and Manufacture, 1998, 38 (3): 205-213.
92
RAHMAN M, HEIKKALA J, LAPPALAINEN K. Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory [J]. International Journal of Machine Tools and Manufacture, 2000, 40 (10): 1535-1546.
93
BOHEZ E L. Compensating for systematic errors in 5-axis NC machining [J]. Computer-Aided Design, 2002, 34 (5): 391-403.
94
RAKSIRI C, PARNICHKUN M. Geometric and force errors compensation in a 3-axis CNC milling machine [J]. International Journal of Machine Tools and Manufacture, 2004, 44 (12-13): 1283-1291.
95
HU C G. Deformation control and error compensation in precision machining of thin-walled parts [D]. Xi’an: Northwestern Polytechnical University, 2007: 52-64 (in Chinese).
96
LAW K M, GEDDAM A. Error compensation in the end milling of pockets: a methodology [J]. Journal of Materials Processing Technology, 2003, 139 (1-3): 21-27.
97
SUH S H, CHO J H, HASCOET J Y. Incorporation of tool deflection in tool path computation: simulation and analysis [J]. Journal of Manufacturing Systems, 1996, 15 (3): 190-199.
98
HABIBI M. AREZOO B, NOIEDEH M V. Tool deflection and geometrical error compensation by tool path modification [J]. International Journal of Machine Tools and Manufacture, 2011, 51 (6): 439-449.
99
SOORI M, AREZOO B, HABIBI M. Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machine system [J]. Journal of Manufacturing Science and Engineering, 2016, 138 (8): 081005.
100
WAN M, ZHANG W H, QIN G H, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece [J]. International Journal of Machine Tools and Manufacture, 2008, 48 (12-13): 1366-1374.
101
MA W, HE G, ZHU L, et al. Tool deflection error compensation in five-axis ball-end milling of sculptured surface [J]. The International Journal of Advanced Manufacturing Technology, 2016, 84 (5-8): 1421-1430.
102
DU Z, ZHANG D, HOU H, et al. Peripheral milling force induced error compensation using analytical force model and APDL deformation calculation [J]. The International Journal of Advanced Manufacturing Technology, 2017, 88 (9-12): 3405-3417.
103
HUANG N, BI Q, WANG Y, et al. 5-axisAdaptive flank milling of flexible thin-walled parts based on the on-machine measurement [J]. International Journal of Machine Tools and Manufacture, 2014, 84: 1-8.
104
PONIATOWSKA M. Free-form surface machine error compensation applying 3D CAD machine pattern model [J]. Computer-Aided Design, 2015, 62: 227-235.
105
PONIATOWSKA M. Deviation model base on method of planning accuracy inspection of free-form surfaces using CMMs [J]. Measurement, 2012, 45 (5): 927-937.
106
WANG M H, SUN Y. Error prediction and compensation based on interference-free toolpaths in blade milling [J]. International Journal of Advanced Manufacturing Technology, 2014, 71 (5-8): 1309-1318.
107
LIM E M, MENG C H. Error compensation for sculptured surface productions by the application of control-surface strategy using predicted machining errors [J]. Journal of Manufacturing Science and Engineering, 1997, 119 (3): 402-409.
108
GUIASSA R, MAYER J R R. Predictive compliance based model for compensation in multi-pass milling by on-machine probing [J]. CIRP Annals-Manufacturing Technology, 2011, 60: 391-394.
109
GUIASSA R, MAYER J R R, BALAZINSKI M, et al. Closed door machine error compensation of complex surfaces using the cutting compliance coefficient and on-machine measurement for a milling process [J]. International Journal of Computer Integrated Manufacturing, 2014, 27 (11): 1022-1030.
110
BRISTO W D, THARAYIL M, ALLEYNE A G. A survey of iterative learning control [J]. IEEE Control Systems, 2006, 26 (3): 96-114.
111
CHO M W, SEO T. Machining error compensation using radial basis function network based on CAD/CAM/CAI integration concept [J]. International Journal of Production Research, 2002, 40 (9): 2159-2174.
112
LIU J, LU X Y. Method of deformation analysis of workpiece in computer aided [J]. Journal of Beijing Institute of Technology, 2002, 22 (6): 687-690 (in Chinese).
113
WANG L T, KE Y L, HUANG Z G, et al. Numerical control milling deformation prediction based on neural network [J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23 (2): 209-211 (in Chinese).
114
YUAN Y, ZHANG H T, WU Y, et al. Bayesian earning-based model-predictive vibration control for thin-walled workpiece machine processes [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22: 509-520.
115
RAO S S, CHEN L. Determination of optimal machining conditions: a coupled uncertainty model [J]. Journal of Manufacturing Science and Engineering, 1998, 122: 206-214.
116
MD M H, JULIUS S. Physics-Informed uncertainty quantification in modeling of machining-induced residual stress [J]. Procedia CIRP, 2023, 117: 139-144.
117
YUE X W, WEN Y C, HUNT J H, et al. Surrogate model based control considering uncertainties for composite fuselage assembly [J]. Journal of Manufacturing Science & Engineering, 2018, 140 (4): 041017.
118
LI X, YANG Y, LI L, et al. Uncertainty quantification in machining deformation based on Bayesian network [J]. Reliability Engineering and System Safety, 2020, 203: 107113.
119
SCHMITZ T L, KARANDIKAR J, KIM N H, et al. Uncertainty in machining: workshop summary and contributions [J]. Journal of Manufacturing Science and Engineering, 2011, 133 (5): 051009.
120
LEE S W, LEE H K. Rule-based cutting condition recommendation system for intelligent machine tools [J]. Journal of Mechanical Science and Technology, 2009, 23: 1202-1210.
121
PENG C, DU H, LIAO T W. A research on the cutting database system based on machining features and TOPSIS [J]. Robotics and Computer-Integrated Manufacturing, 2017, 43: 96-104.
122
ZAINAL N, ZAIN A M, RADZI N, et al. Glowworm swarm optimization (GSO) for optimization of machining parameters [J]. Journal of Intelligent Manufacturing, 2016, 27: 797-804.
123
LI B, TIAN X, ZHANG M. Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm [J]. International Journal of Advanced Manufacturing Technology, 2020, 111: 2323-2335.
124
LI X, LI L, YANG Y, et al. Machining deformation of single-sided component based on finishing allowance optimization [J]. Chinese Journal of Aeronautics, 2020, 33 (9): 2434-2444
125
ZHAO X, ZHENG L, ZHANG Y. Online first-order machining error compensation for thin-walled parts considering time-varying cutting condition [J]. Journal of Manufacturing Science & Engineering, 2022, 144 (2): 021006.
126
SOORI M, AREZOO B. Minimization of surface roughness and residual stress in grinding operations of Inconel 718 [J]. Journal of Materials Engineering and Performance, 2022, 32: 8185-8194.
127
MOHANRAJ T, SHANKAR S, RAJASEKAR R, et al. Tool condition monitoring techniques in milling process: A review [J]. Journal of Marketing Research, 2020, 9: 1032-1042.
128
WINTER K, HARTMANN J, JESCHKE P, et al. Experimental and numerical investigation of streamwise surface waviness on axial compressor blades: GT2013-95983, V06AT35A041 [R]. San Antonio: ASME, 2013.
129
LAN R H, HUANG Y, CHEN G L, et al. Self-adaptive belt grinding technology and its experimental research on aeroengine blade [J]. Aeronautical Manufacturing Technology, 2018, 61 (15): 16-24 (in Chinese).
130
GAO L M, YANG G, WANG H H, et al. Research on the aerodynamic sensitive position and width of waviness on the high subsonic profile [J]. Journal of Engineering Thermophysics, 2023, 44 (1): 78-85 (in Chinese).
131
ZHNAG J Y, SHI Y Y, LIN X J, et al. Freestyle belt polishing technology for leading and trailing edges of aero-engine blade [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (3): 242-250 (in Chinese).
132
ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero-engine blade edge [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (10): 524318 (in Chinese).
133
ZHANG M D, CAI H S, XIE L, et al. Research on key technology of CNC abrasive belt grinding for aircraft engines blade edges [J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37 (5): 797-803 (in Chinese).
134
ACKERET J. Über luftkräfte bei sehr grossen geschwindigkeiten insbesondere bei ebenen strömungen [J]. Helvetica Chimica Acta, 1928, 1: 301-322.
135
SHAPIRO A. The dynamics and thermodynamics of compressible fluid flow, Ⅱ [M]. Cambridge: Cambridge University Press, 1954: 832-846.
136
LIGHTHILL M. On boundary layers and upstream influence. II. Supersonic flows without separation [J]. Proceedings of the Royal Society of London, 1953, 217 (1131): 478-507.
137
BENJAMIN T. Shearing flow over a wavy boundary [J]. Journal of Fluid Mechanics, 1959, 6 (2): 161-205.
138
LEKOUDIS S, NAYFEH A, SARIC W. Compressible boundary layers over wavy walls [J]. Physics of Fluids, 1976, 19 (4): 514-519.
139
HOSOKAWA I. Transonic flow past a wavy wall [J]. Journal of the Physical Society of Japan, 1960, 15 (11): 2080-2086.
140
ZIEREP J. Die Transsonische umströmung der welligen wand mit verdichtungsstössen [J]. Applied Mechanics Reviews, 1972, 17: 721-729.
141
JUNGBLUTH H. Experimente zur schallnahen strömung längs einer welligen wand [J]. Acta Mechanica, 1975, 22 (3): 171-180.
142
CHERNORAY V, ORE S, LARSSON J. Effect of geometry deviations on the aerodynamic performance of an outlet guide vane cascade: GT2010-22923 [R]. Glasgow: ASME, 2010.
143
HARTMANN J, WINTER K, JESCHKE P, et al. Tolerant airfoils-numerische und experimentelle untersuchung des einflusses kleinskaliger geometrievariationen auf die aerodynamik von verdichterschaufeln [J]. Institute of Jet Propulsion and Turbomachinery, 2011, 1-2: 866-873.
144
HARTMANN J, WINTER K, JESCHKE P. Aerodynamic influence of streamwise surface corrugation on axial compressor blades: RWTH-CONV-202159 [R]. Budapest: Chair of Jet Propulsion and Turbomachinery, 2012.
145
KOIKE Y, MATSUBARA A, NISHIWAKI S, et al. Cutting path design to minimize workpiece displacement at cutting point: Milling of thin-walled parts [J]. International Journal of Automation Technology, 2012, 6 (5): 638-647.
146
KOIKE Y, MATSUBARA A, YAMAJI L. Design method of material removal process for minimizing workpiece displacement at cutting point [J]. CIRP Annals-Manufacturing Technology, 2013, 62: 419-422.
147
WANG J, IBARAKI S, MATSUBARA A. A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining [J]. Precision Engineering, 2017, 50: 506-514.
148
YAN Q, LUO M, TANG K. Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint [J]. Computer-Aided Design, 2018, 100: 14-29.
149
LUO M, ZHANG D H, WU B H, et al. Material removal process optimization for milling of flexible workpiece considering machining stability [J]. Journal of Engineering Manufacture, 2011, 225 (8): 1263-1272.
150
MUNDIM R B, BORILLE A V. An approach for reducing undesired vibrations in milling of low rigidity structures [J]. The International Journal of Advanced Manufacturing Technology, 2017, 88 (1-4): 971-983.
151
TUYSUZ O, ALTINTAS Y. Time-Domain modeling of varying dynamic characteristics in thin-wall machining using perturbation and reduced-order sub structuring methods [J]. Journal of Manufacturing Science and Engineering, 2018, 140: 011015.
152
WANG W, YUN C, ZHANG L. Optimization algorithm for robotic belt surface grinding process [J]. Journal of Mechanical Engineer, 2011, 47 (7): 8-15 (in Chinese).
153
LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (6): 2074-2082 (in Chinese).
154
YANG J H, ZHANG D H, WU B H, et al. A path planning method for error region grinding of aero-engine blades with free-form surface [J]. The International Journal of Advanced Manufacturing Technology, 2015, 81 (1-4): 717-728.
155
HUANG Z, SONG R, WAN C B, et al. Trajectory planning of abrasive belt grinding for aero-engine blade profile [J]. The international Journal of Advanced Manufacturing Technology, 2019, 102: 405-514.
156
LV Y, PENG Z, QU C, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model [J]. Robotics and Computer-Integrated Manufacturing, 2020, 66: 101987.
157
PANDIYAN V, CAESARENDRA W, TJAHJOWIDODO T, et al. Predictive modelling and analysis of process parameters on material removal characteristics in abrasive belt grinding process [J]. Applied Science, 2017, 7 (4): 363-369.
158
ZHE H, JIANYONG L, YUEMING L, et al. Investigating the effects of contact pressure on rail material abrasive belt grinding performance [J]. The International Journal of Advanced Manufacturing Technology, 2017, 9: 779-786.
159
XIAO G, SONG K, LIU S, et al. Comprehensive investigation into the effects of relative grinding direction on abrasive belt grinding process [J]. Journal of Manufacturing Processes, 2021, 62: 753-761.
160
HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul [J]. Journal of Materials Processing Technology, 2002, 127 (2): 140-145.
161
PANDIYAN V, CAESARENDRA W, GLOWACZ A, et al. Modelling of material removal in abrasive belt grinding process: A regression approach [J]. Symmetry, 2020, 12: 99-104.
162
GILL S S, SINGH J. An Adaptive Neuro-Fuzzy Inference System modeling for material removal rate in stationary ultrasonic drilling of sillimanite ceramic [J]. Expert Systems with Applications, 2010, 37 (8): 5590-5598.
163
KHALICK M, HONG J, WANG D. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93: 1463-1471.
164
GAO K, CHEN H, ZHANG X, et al. A novel material removal prediction method based on acoustic sensing and ensemble XG-Boost learning algorithm for robotic belt grinding of Inconel 718 [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 217-232.
165
BIXLER G D, BHUSHAN B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects [J]. Soft Matter, 2012, 8 (44): 12139-12143.
166
ATT W, OGAWA T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration [J]. The International Journal of Oral & Maxillofacial Implants, 2012, 27 (4): 753-761
167
KLOCKE F, FELDHAUS B. Development of an incremental rolling process for the production of defined riblet surface structures [J]. Production Engineering, 2007, 1: 233-237.
168
WALSH M J. Riblets as a viscous drag reduction technique [J]. AIAA Journal, 1983, 21 (4): 485-486.
169
DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review [J]. Philosophical Transactions of the Royal Society A, 2010, 368 (1929): 4775-4806.
170
BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry [J]. Journal of Fluid Mechanics, 1997, 338 (10): 59-87.
171
CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets [J]. Journal of Fluid Mechanics, 1993, 255 (26): 503-539.
172
ZHANG D Y, LUO Y H, CHEN H W, et al. Exploring drag-reducing grooved internal coating for gas pipelines [J]. Pipeline and Gas Journal, 2011, 238 (3): 58-61.
173
ZHANG D Y, LI Y Y, HAN X, et al. High-precision bio-replication of synthetic drag reduction shark skin [J]. Chinese Science Bulletin, 2011, 56 (5): 938-944.
174
XIAO G J, HE Y, HUANG Y, et al. Bionic microstructure on titanium alloy blade with belt grinding and its drag reduction performance [J]. Journal of Engineering Manufacture, 2021, 235 (14): 2230-2239.
175
FISH F E, BATTLE J M. Hydrodynamic Design of the Humpback Whale Flipper [J]. Journal of Morphology, 1995, 225: 51-60.
176
ASGHAR A, ALLAN W D E, LA VIOLETTE M, et al. Influence of a novel 3D leading edge geometry on the aerodynamic performance of low pressure turbine blade cascade vanes: GT2014-25899, V02CT38A024 [R]. Düsseldorf: ASME, 2014.
177
PEREZ R E, ASGHAR A. Numerical study of the effects of leading edge tubercles on transonic performance of airfoils [R]. Atlanta: AIAA, 2018.
178
ZHANG K. Study on the effect of the leading edge blade of the drum pack on the performance and stability of the compressor [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 16-34 (in Chinese).
179
ZHANG K, TU B F. Investigation on Tubercle Leading Edge Blade in Annular Cascade [J]. Journal of Engineering Thermophysics, 2016, 37 (3): 514-0518 (in Chinese).
180
ZHENG T, QIANG X Q, TENG J F, et al. Application of humpback whale flippers in an annular compressor cascade: GT2016-56589, V02AT37A016 [R]. Seoul: ASME, 2016.
181
ZHENG T, ZHU M, QIANG X Q, et al. Influence of leading edge tubercles in an annular compressor cascade with different hub-tip ratios and aspect ratios: GT2017-64054, V02AT39A026 [R]. Charlotte: ASME, 2017.
182
ZHENG T. Study on the flow mechanism of the knotted projection at the leading edge of the diffuser grille [D]. Shanghai: Shanghai Jiao Tong University, 2019: 49-72 (in Chinese).
183
WANG B, WU Y, LIU K. Numerical investigation of passive flow control using wavy blades in a highly-loaded compressor cascade: GT2018-76147, V02AT39A025 [R]. Oslo: ASME, 2018.
184
SU L R, QIANG X Q. DES Investigation on compressor cascade flow control using undulating blade [J]. Energy Conservation Technology, 2020, 38 (1): 16-20 (in Chine-se).
185
BECHERT D W, BARTENWERFER M. The viscous-flow on sur-face with longitudinal ribs [J]. Journal of Fluid Mechanics, 1989, 206: 105-129.
186
WALSH M J, LINDEMANN A M. Optimization and application of riblets for turbulent drag reduction: 84-0347 [R]. Reno: AIAA, 1984.
187
PAOLO L, FERNANDO M, AMILCARE P. Resistance of groove surface to parallel flow and cross-flow [J]. Journal of Fluid Mechanics, 1991, 228: 87-109.
188
OEHLERT K, SEUME J R, SIEGEL F. Exploratory experiments on machined riblets for 2-D compressor blades: IMECE2007-43457 [R]. Seattle: ASME, 2007.
189
BECHERT, D, BRUSE, M, HAGE, W, et al. Fluid mechanics of biological surfaces and their technological application [J]. Naturwissenschaften, 2000, 87: 157-171.
190
SCHOLLE M, RUND A, AKSEL N. Drag reduction and improvement of material transport in creeping films [J]. Archive of Applied Mechanics, 2006, 75 (2-3): 93-112.
191
BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin [J]. Experiments in Fluids, 2000, 28 (5): 403-412.
192
YU H Y, ZHANG H C, GUO Y G, et al. Thermodynamic analysis of shark skin texture surfaces for microchannel flow [J]. Continuum Mechanics and Thermodynamics, 2016, 28 (5): 1361-1371.
193
SAVILL A M. Effects on turbulent boundary layer structure of longitudinal riblets alone and in combination with outer layer devices [C] //Proceedings of the fourth international symposium on flow visualization. Berlin: Springer, 1986: 303-308.
194
HIRSCHEL E H, THIEDE P, MONNOYER F. Turbulence management-applications aspects [C] //The AGARD symposium on fluid dynamics of three-dimensional turbulent shear flows and transition. Neuilly-sur-Seine: AGARD, 1988: 1-12.
195
COUSTOLS E, COSTEIX J. Turbulent boundary layer manipulation in zero pressure gradient [C] //Turbulent Shear Flows 6. Toulouse: ICAS and AIAA, 1988: 999-1013
196
COUSTOLS E. Behavior of internal manipulators: “riblet” models in subsonic and transonic flows [C] //2nd Shear Flow Conference. Tempe: AIAA, 1989: 1-4.
197
ENYUTIN G V, LASHKOV Y, SAMOILOVA N V, et al. Influence of downwash on the aerodynamic efficiency of fine-ribbed surfaces [J]. Fluid Dynamics, 1991, 26: 31-35.
198
COUSTOLS E, SAVILL A M. Turbulent skin friction drag reduction by active and passive means-1 and 2 [C] //Special course on skin friction drag reduction. Neuilly-sur-Seine: AGARD, 1992: 1-80.
199
SCHNEIDER M, DINKELACKER A. Drag reduction by means of surface riblets on an inclined body of revolution [C] //Speziale CG, Launder BE (eds) Near-wall turbulent flows. Amsterdam: Elsevier, 1993: 771-780.
200
KOELTZSCH K, DINKELACKER A, GRUNDMANN R. Flow over convergent and divergent wall riblets [J]. Experiments in Fluids, 2022, 33 (8): 346-350.
201
NUGROHO B, HUTCHINS N, MONTY J P. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness [J]. International Journal of Heat and Fluid Flow, 2013, 40: 90-102.
202
CHEN H, RAO F, SHANG X, et al. Flow over bio-inspired 3d herringbone wall riblets [J]. Experiments in Fluids, 2014, 55 (3): 1-7.
203
LIU Q, ZHONG S, LI L. Effects of bio-inspired micro-scale surface patterns on the profile losses in a linear cascade [J]. Journal of Turbomachinery, 2019, 141 (12): 121006.
204
LIU Q, ZHONG S, LI L. Investigation of riblet geometry and start locations of herringbone riblets on pressure losses in a linear cascade at low Reynolds numbers [J]. Journal of Turbomachinery, 2020, 142 (10): 101010.
205
TEJ P, KARALI P. Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V [J]. Journal of Materials Processing Technology, 2018, 262: 168-181.
206
MO Q, LIU L, LI Y. Fabrication of IBAD-MgO and PLD-CeO2 layers for YBCO coated conductors [J]. Chinese Physics Letters, 2015, 32: 206-209.
207
PATEL D S, JAIN V K, SHRIVASTAVA A, et al. Electrochemical micro texturing on flat and curved surfaces: simulation and experiments [J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 1269-1286.
208
LI X, DENG J, LIU L, et al. Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization [J]. Surface and Coatings Technology, 2018, 352 (7): 128-143.
209
MENG Y, DENG J, ZHANG Y, et al. Tribological properties of textured surfaces fabricated on AISI 1045 steels by ultrasonic surface rolling under dry reciprocating sliding [J]. Wear, 2020, 460-461: 203488.
210
FANG S, LLANES L, BAEHRE D. Laser surface texturing of a WC-CoNi cemented carbide grade: surface topography design for honing application [J]. Tribology International, 2018, 122: 236-245.
211
XIE J, XIE H F, LIU X R, et al. Dry micro-grooving on Si wafer using a coarse diamond grinding [J]. International Journal of Machine Tools and Manufacture, 2012, 61: 1-8.
212
DENKENA B, KOEHLER J, WANG B. Manufacturing of functional riblet structure by profile grinding [J]. CIRP Journal of Manufacturing Science and Technology, 2010, 9 (3): 14-26.
213
XIAO G J, HE Y, HUANG Y, et al. Single particle removal model and experimental study on micro bionic zig-zag surface of aeronautical blade using belt grinding [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (7): 623288 (in Chinese).
214
XIAO G J, HE Y, HUANG Y, et al. Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding [J]. IEEE Access, 2019, 7 (107): 635-647.
215
PATEL D S, SINGH A, BALANI K, et al. Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V [J]. Surface and Coatings Technology, 2018, 349: 816-829.
216
LIU Y, DENG J, WANG W, et al. Effect of texture parameters on cutting performance of flank-faced textured carbide tools in dry cutting of green Al2O3 [J]. Ceramics International, 2018, 44 (13): 205-217.
217
ARSLAN A, MASJUKI H H, KALAM M A, et al. Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: a review [J]. Critical Reviews in Solid State and Materials Sciences, 2016, 41: 447-481.
218
BUTTNER C C, SCHULZ U. Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines [J]. Smart Materials and Structures, 2011, 20 (9): 094016.
219
SCHLIETER A, PFLUMM R, SHAKHVERDOVA I, et al. Mechanical properties of shark-skin like structured surfaces for high-temperature applications [J]. Advanced Engineering Materials, 2015, 18 (5): 688-702.
220
LI X M, DENG J X, ZHANG L L, et al. Effect of surface textures and electrohydrodynamically atomized WS2 films on the friction and wear properties of ZrO2 coatings [J]. Ceramics International, 2019, 45: 1020-1030.
221
DING L, AXINTE D, BUTLER-SMITH P, et al. Study on the characterisation of the PTFE transfer film and the dimensional designing of surface texturing in a dry-lubricated bearing system [J]. Wear, 2020, 448-449: 203238.
222
KUMAR M, RANJAN V, TYAGI R. Effect of Shape, Density, and an array of dimples on the friction and wear performance of laser textured bearing steel under dry sliding [J]. Journal of Materials Engineering and Performance, 2020, 29: 2827-2838.
223
MULRONEY A T, GUPTA M C. Optically transparent superhydrophobic polydimethylsiloxane by periodic surface micro-texture [J]. Surface and Coatings Technology, 2017, 325: 308-317.
224
YUE H Z, DENG J X, GE D L, et al. Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication [J]. Journal of Manufacturing Processes, 2019, 47: 172-182.
225
YANG J A, GU D D, LIN K J, et al. Laser additive manufacturing of bio-inspired metallic structures [J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1: 100013.
226
ISO/ASTM International. Additive manufacturing-general principles-terminology: ISO/ASTM 52900 [S] .
227
GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing [J]. Science, 2021, 372 (6545): 1487-1503.
228
HU K M, LIN K J, GU D D, et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures [J]. Materials Science and Engineering: A, 2019, 762: 138089.
229
GU D D, DU LEI, DAI D H, et al. Influence of thermal behavior along deposition direction on microstructure and microhardness of laser melting deposited metallic parts [J]. Applied Physics A, 2015, 125 (7): 455.
230
MATTHEW J H, ADMIR M, HOLTEN-ANDERSEN N, et al. Iron-Clad Fibers: A metal-based biological strategy for hard flexible coatings [J]. Science, 2010, 328: 216-220.
231
YAO H M, DAO M, IMHOLT T, et al. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod [J]. The Proceedings of the National Academy of Sciences, 2010, 107 (3): 987-992.
232
TODARO C J, EASTON M A, QIU D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound [J]. Nature Communications, 2020, 11: 142.
233
RONG T, GU D D. Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting [J]. Journal of Alloys and Compounds, 2016, 680: 333-342.
234
LAI F, QU S, LEWIS R, et al. The influence of ultrasonic surface rolling on the fatigue and wear properties of 23-8N engine valve steel [J]. International Journal of Fatigue, 2019, 125: 299-313.
235
ZHANG Q, HU Z, SU W, et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology [J]. Surface and Coatings Technology, 2017, 321: 64-73.
236
QU S, HU X, LU F, et al. Rolling contact fatigue properties of ultrasonic surface rolling treated 25CrNi2MoV steel under different lubricant viscosities [J]. International Journal of Fatigue, 2020, 142: 105970.
237
DANG J, ZHANG H, AN Q, et al. Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process [J]. Surface and Coatings Technology, 2021, 421: 127380.
238
ZHANG Y L, LAI F Q, QU S G, et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel [J]. Surface and Coatings Technology, 2019, 366: 321-330.
239
ZHANG Y, HUANG L, LU F, et al. Effects of ultrasonic surface rolling on fretting wear behaviors of a novel 25CrNi2MoV steel [J]. Materials Letters, 2020, 284 (2): 128955.
240
REN Z, LAI F, QU S, et al. Effect of ultrasonic surface rolling on surface layer properties and fretting wear properties of titanium alloy Ti5Al4Mo6V2Nb1Fe [J]. Surface and Coatings Technology, 2020, 389: 125612.
241
LIU D, LIU D, GUAGLIANO M, et al. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. Journal of Materials Science and Technology, 2020, 61: 63-74.
242
LIU Z, GAO C, LIU X, et al. Improved surface integrity of Ti6Al4V fabricated by selective electron beam melting using ultrasonic surface rolling processing [J]. Journal of Materials Processing Technology, 2021, 297: 117264.
243
LEI L, ZHAO Q, ZHAO Y, et al. Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling [J]. Journal of Materials Processing Technology, 2021, 299: 117322.
244
LI Y, LIAN G, GENG J, et al. Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite [J]. Journal of Materials Processing Technology, 2021, 293: 117068.
245
LU L X, SUN J, LI L, et al. Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process [J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2533-2539.
246
XU X, LIU D, ZHANG X, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. Journal of Materials Science and Technology, 2019, 40: 88-98.
247
GENG J, YAN Z, ZHANG H, et al. Microstructure and mechanical properties of AZ31B magnesium alloy via ultrasonic surface rolling process [J]. Advanced Engineering Materials, 2021, 23 (9): 1-7.
248
ZHOU M, XU Y, LIU Y, et al. Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4Zr alloys treated by ultrasonic surface rolling process [J]. Materials Science and Engineering, 2021, 828: 141881.
249
YE H, SUN X, LIU Y, et al. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy [J]. Surface and Coatings Technology, 2019, 372: 288-298.
250
YANG J, LIU D, ZHANG X, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy [J]. International Journal of Fatigue, 2019, 133: 105373.
251
WANG T, WANG D, LIU G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing [J]. Applied Surface Science, 2008, 255: 1824-1829.
252
LIU Z, HE M, ZHAO J. Mechanical machining strengthening mechanism and material processing technology-a review [J]. Chinese Journal of Mechanical Engineering, 2015, 26: 403-413.
253
CHENG M, ZHANG D, CHEN H, et al. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread [J]. Journal of Materials Processing Technology, 2014, 214: 2395-2401.
254
LI G, QU S, PAN Y, et al. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti-6Al-4V alloy [J]. Applied Surface Science, 2016, 389: 324-334.
Acta Aeronautica et Astronautica Sinica
Article number: 629642
Cite this article:
ZHANG D, HE Z, ZHANG X, et al. Influence of blade multi-scale surface on aerodynamic performance of compressor and its high-performance manufacturing: A review. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629642. https://doi.org/10.7527/S1000-6893.2023.29642
Metrics & Citations  
Article History
Copyright
Return