Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The crash test of civil aircraft is a worldwide technical problem, and it is the most direct means to evaluate the crashworthiness of civil aircraft. In this paper, the high precision lifting height control and high reliability delivery method of the full-scale aircraft crash test are proposed, and the testing methods of the key physical parameters such as structural response and dummy response are given. A dynamic response test system for the whole aircraft crash test was constructed, and using a unified time reference trigger method, the ground impact load, structural acceleration response, dummy response, and aircraft failure and deformation were analyzed. The response distribution rules of different parts of the aircraft were obtained. The revised comprehensive evaluation index ICI of the adaptability was put forward. The results show that the test data are complete and reliable. After the vertical crash at 5.71 m/s, the lower structure of the cabin floor is seriously deformed, and the upper structure of the fuselage in the central wing area is obviously deformed due to the inertia effect of the wing. The stiffness difference of the different fuselage segments results in significant differences in crash load and dynamic response. The higher the stiffness is, the smaller the deformation and the greater the acceleration response will be. After the crash, the load on the passengers was within safe range, the cabin seats are intact, the cabin doors can be opened normally., the living space of the passengers is sufficient, and the evacuation channel of the passengers is unblocked. Compared with the original ICI index, the revised evaluation result has better engineering applicability.