Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Growing market demand from portable electronics to electric automobiles boosts the development of lithium-ion batteries (LIBs) with high energy density and rate performance. However, strong solvation effect between lithium ions (Li+) and solvent molecules in common electrolytes limits the mobility of Li+ ions in electrolytes. Consequently, anions dominate the charge conduction in electrolytes, and in most cases, the value of Li+ transference number (T+) is between 0.2 and 0.4. A low T+ will aggravate concentration polarization in the process of charging and discharging, especially at high rate, which not only increases the overpotential but also intensifies side reactions, along with uneven deposition of lithium (Li) and the growth of lithium dendrites when lithium metal is used as anode. In this review, promising strategies to improve T+ in liquid electrolytes would be summarized. The migration of Li+ ions is affected directly by the types and concentration of lithium salts, solvents, and additives in bulk electrolytes. Besides, Li+ ions will pass through the separator and solid electrolyte interphase (SEI) when transferring between anodes and cathodes. With this in mind, we will classify and summarize threads of enhancing T+ from five aspects: lithium salts, solvents, additives, separators, and SEI based on different mechanisms, including covalently bonding, desolvation effect, Lewis acid-base interaction, electrostatic interaction, pore sieving, and supramolecular interaction. We believe this review will present a systematic understanding and summary on T+ and point out some feasible threads to enhance battery performance by enhancing T+.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.
Tomaszewska, A.; Chu, Z. Y.; Feng, X. N.; O’Kane, S.; Liu, X. H.; Chen, J. Y.; Ji, C. Z.; Endler, E.; Li, R. H.; Liu, L. S. et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011.
Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.
Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.
Jin, H. C.; Xin, S.; Chuang, C.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197.
Liu, H. D.; Zhu, Z. Y.; Yan, Q. Z.; Yu, S. C.; He, X.; Chen, Y.; Zhang, R.; Ma, L.; Liu, T. C.; Li, M. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020, 585, 63–67.
Tian, T.; Lu, L. L.; Yin, Y. C.; Li, F.; Zhang, T. W.; Song, Y. H.; Tan, Y. H.; Yao, H. B. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2007419.
Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.
Wang, Z. J.; Yang, K.; Song, Y. L.; Lin, H.; Li, K.; Cui, Y. L.; Yang, L. Y.; Pan, F. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 2020, 13, 2431–2437.
Wang, W. J.; Zhu, X. H.; Fu, L. Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries. CCS Chem. 2021, 3, 686–695.
Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.
Blint, R. J. Binding of ether and carbonyl oxygens to lithium ion. J. Electrochem. Soc. 1995, 142, 696–702.
Endo, E.; Ata, M.; Tanaka, K.; Sekai, K. Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries. J. Electrochem. Soc. 1998, 145, 3757–3764.
Wang, Y. X.; Nakamura, S.; Ue, M.; Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: Reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 2001, 123, 11708–11718.
Yanase, S.; Oi, T. Solvation of lithium ion in organic electrolyte solutions and its isotopie reduced partition function ratios studied by ab initio Molecular orbital method. J. Nucl. Sci. Technol. 2002, 39, 1060–1064.
Fukushima, T.; Matsuda, Y.; Hashimoto, H.; Arakawa, R. Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy. Electrochem. Solid-State Lett. 2001, 4, A127.
Salomon, M. Conductance of solutions of lithium bis (trifluoromethanesulfone) imide in water, propylene carbonate, acetonitrile and methyl formate at 25 °C. J. Solution Chem. 1993, 22, 715–725.
Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 1994, 141, 3336–3342.
Sun, X. G.; Kerr, J. B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis (allylmalonato) borate. Macromolecules 2006, 39, 362–372.
Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E. Electrochemomechanics of lithium dendrite growth. Energy Environ. Sci. 2019, 12, 3595–3607.
Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39, 2073–2081.
Thomas, K. E.; Sloop, S. E.; Kerr, J. B.; Newman, J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 2000, 89, 132–138.
Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.
Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.
Bruce, P. G.; Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 1987, 225, 1–17.
Ma, Y. P.; Doyle, M.; Fuller, T. F.; Doeff, M. M.; De Jonghe, L. C.; Newman, J. The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. J. Electrochem. Soc. 1995, 142, 1859–1868.
Shah, D. B.; Nguyen, H. Q.; Grundy, L. S.; Olson, K. R.; Mecham, S. J.; DeSimone, J. M.; Balsara, N. P. Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes. Phys. Chem. Chem. Phys. 2019, 21, 7857–7866.
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.
Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.
Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 2011, 133, 13121–13129.
Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.
Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.
McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 2014, 7, 416–426.
Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J. H.; Tateyama, Y.; Yamada, A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2, 1627.
Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.
Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.
Borodin, O.; Suo, L. M.; Gobet, M.; Ren, X. M.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M. S. et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 2017, 11, 10462–10471.
Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.
Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.
Huang, F. F.; Ma, G. Q.; Wen, Z. Y.; Jin, J.; Xu, S. Q.; Zhang, J. J. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J. Mater. Chem. A 2018, 6, 1612–1620.
Von Aspern, N.; Röschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Fluorine and lithium: Ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem., Int. Ed. 2019, 58, 15978–16000.
Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.
Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions. J. Power Sources 2003, 119–121, 784–788.
Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta 2002, 47, 2787–2793.
Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.
Popovic, J.; Höfler, D.; Melchior, J. P.; Münchinger, A.; List, B.; Maier, J. High lithium transference number electrolytes containing tetratriflylpropene’s lithium salt. J. Phys. Chem. Lett. 2018, 9, 5116–5120.
Niedzicki, L.; Kasprzyk, M.; Kuziak, K.; Żukowska, G. Z.; Marcinek, M.; Wieczorek, W.; Armand, M. Liquid electrolytes based on new lithium conductive imidazole salts. J. Power Sources 2011, 196, 1386–1391.
Armand, M.; Johansson, P.; Bukowska, M.; Szczeciński, P.; Niedzicki, L.; Marcinek, M.; Dranka, M.; Zachara, J.; Żukowska, G.; Marczewski, M. et al. Review—Development of Hückel type anions: From molecular modeling to industrial commercialization. A success story. J. Electrochem. Soc. 2020, 167, 070562.
Niedzicki, L.; Oledzki, P.; Bitner, A.; Bukowska, M.; Szczecinski, P. Benzimidazole-derived anion for lithium-conducting electrolytes. J. Power Sources 2016, 306, 573–577.
Shi, Q.; Zhou, X. Synthesis of a novel macromolecular lithium salt-hyperbranched lithium polyglycidol sulfate and properties of its nonaqueous solution. Acta Polym. Sin. 2004, 114–120.
Buss, H. G.; Chan, S. Y.; Lynd, N. A.; McCloskey, B. D. Nonaqueous polyelectrolyte solutions as liquid electrolytes with high lithium ion transference number and conductivity. ACS Energy Lett. 2017, 2, 481–487.
Fong, K. D.; Self, J.; Diederichsen, K. M.; Wood, B. M.; McCloskey, B. D.; Persson, K. A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Cent. Sci. 2019, 5, 1250–1260.
Tokuda, H.; Muto, S.;Hoshi, N.; Minakata, T.; Ikeda, M.; Yamamoto, F.; Watanabe, M. Synthesis, characterization, and ion-conductive behavior in an organic solvent and in a polyether of a novel lithium salt of a perfluorinated polyimide anion. Macromolecules 2002, 35, 1403–1411.
Diederichsen, K. M.; Fong, K. D.; Terrell, R. C.; Persson, K. A.; McCloskey, B. D. Investigation of solvent type and salt addition in high transference number nonaqueous polyelectrolyte solutions for lithium ion batteries. Macromolecules 2018, 51, 8761–8771.
Diederichsen, K. M.; McCloskey, B. D. Electrolyte additives to enable nonaqueous polyelectrolyte solutions for lithium ion batteries. Mol. Syst. Des. Eng. 2020, 5, 91–96.
Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 411–416.
Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.
Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.
Wong, D. H. C.; Thelen, J. L.; Fu, Y. B.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. USA 2014, 111, 3327–3331.
Amanchukwu, C. V.; Yu, Z. A.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 2020, 142, 7393–7403.
Rustomji, C. S.; Yang, Y. Y. C.; Kim, T. K.; Mac, J.; Kim, Y. J.; Caldwell, E.; Chung, H.; Meng, Y. S. Liquefied gas electrolytes for electrochemical energy storage devices. Science 2017, 356, eaal4263.
Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.
Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.
Xu, H. W.; Shi, J. L.; Hu, G. S.; He, Y.; Xia, Y. G.; Yin, S. S.; Liu, Z. P. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. J. Power Sources 2018, 391, 113–119.
Lee, H. S.; Yang, X. Q.; Xiang, C. L.; McBreen, J.; Choi, L. S. The synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 1998, 145, 2813–2818.
Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J.; Callahan, J. H.; Choi, L. S. Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. J. Electrochem. Soc. 2000, 147, 9–14.
Choi, N. S.; Ryu, S. W.; Park, J. K. Effect of tris (methoxy diethylene glycol) borate on ionic conductivity and electrochemical stability of ethylene carbonate-based electrolyte. Electrochim. Acta 2008, 53, 6575–6579.
Qiao, B.; Leverick, G. M.; Zhao, W.; Flood, A. H.; Johnson, J. A.; Shao-Horn, Y. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 2018, 140, 10932–10936.
Lagadec, M. F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25.
Deimede, V.; Elmasides, C. Separators for lithium-Ion batteries: A review on the production processes and recent developments. Energy Technol. 2015, 3, 453–468.
Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.
Djian, D.; Alloin, F.; Martinet, S.; Lignier, H.; Sanchez, J. Y. Lithium-ion batteries with high charge rate capacity: Influence of the porous separator. J. Power Sources 2007, 172, 416–421.
Mao, X. F.; Shi, L. Y.; Zhang, H. J.; Wang, Z. Y.; Zhu, J. F.; Qiu, Z. F.; Zhao, Y.; Zhang, M. H.; Yuan, S. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. J. Power Sources 2017, 342, 816–824.
Park, J. H.; Cho, J. H.; Park, W.; Ryoo, D.; Yoon, S. J.; Kim, J. H.; Jeong, Y. U.; Lee, S. Y. Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J. Power Sources 2010, 195, 8306–8310.
Jeong, H. S.; Kim, D. W.; Jeong, Y. U.; Lee, S. Y. Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J. Power Sources 2010, 195, 6116–6121.
Wang, M. N.; Chen, X.; Wang, H.; Wu, H. B.; Jin, X. Y.; Huang, C. Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J. Mater. Chem. A 2017, 5, 311–318.
Wang, Z. Y.; Guo, F. L.; Chen, C.; Shi, L. Y.; Yuan, S.; Sun, L. N.; Zhu, J. F. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322.
Chi, M. M.; Shi, L. Y.; Wang, Z. Y.; Zhu, J. F.; Mao, X. F.; Zhao, Y.; Zhang, M. H.; Sun, L. N.; Yuan, S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 2016, 28, 1–11.
Zhu, Y. S.; Xiao, S. Y.; Li, M. X.; Chang, Z.; Wang, F. X.; Gao, J.; Wu, Y. P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 2015, 288, 368–375.
Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J. Mater. Chem. A 2018, 6, 991–998.
Wang, X.; Peng, L. Q.; Hua, H. M.; Liu, Y. Z.; Zhang, P.; Zhao, J. B. Magnesium borate fiber coating separators with high lithium-ion transference number for lithium-ion batteries. ChemElectroChem 2020, 7, 1187–1192.
Shen, L.; Wu, H. B.; Liu, F.; Zhang, C.; Ma, S. X.; Le, Z. Y.; Lu, Y. F. Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horiz. 2019, 4, 705–711.
Zhang, C.; Shen, L.; Shen, J. Q.; Liu, F.; Chen, G.; Tao, R.; Ma, S. X.; Peng, Y. T.; Lu, Y. F. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, e1808338.
Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461–10470.
Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 2017, 1, 394–406.
Weng, Y. T.; Liu, H. W.; Pei, A.; Shi, F. F.; Wang, H. S.; Lin, C. Y.; Huang, S. S.; Su, L. Y.; Hsu, J. P.; Fang, C. C. et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nat. Commun. 2019, 10, 5824.
Deng, K. R.; Han, D. M.; Ren, S.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119.
Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 2019, 31, 1808392.