https://doi.org/10.26599/AIR.2022.9150005

CAAI Artificial Intelligence Research

Self-Sparse Generative Adversarial Networks

Wenliang Qian"?, Yang Xu'?, Wangmeng Zuo®, and Hui Li"* >

ABSTRACT

Generative adversarial networks (GANs) are an unsupervised generative model that learns data distribution through adversarial
training. However, recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high
dimensional parameter space and the zero gradient problem. In this work, we propose a self-sparse generative adversarial
network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem. In the Self-Sparse GAN,
we design a self-adaptive sparse transform module (SASTM) comprising the sparsity decomposition and feature-map
recombination, which can be applied on multi-channel feature maps to obtain sparse feature maps. The key idea of Self-Sparse
GAN is to add the SASTM following every deconvolution layer in the generator, which can adaptively reduce the parameter space
by utilizing the sparsity in multi-channel feature maps. We theoretically prove that the SASTM can not only reduce the search
space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful
features in the batch normalization layer and driving the weight of deconvolution layers away from being negative. The
experimental results show that our method achieves the best Fréchet inception distance (FID) scores for image generation
compared with Wasserstein GAN with gradient penalty (WGAN-GP) on MNIST, Fashion-MNIST, CIFAR-10, STL-10, mini-
ImageNet, CELEBA-HQ, and LSUN bedrooms datasets, and the relative decrease of FID is 4.76%—21.84%. Meanwhile, an

architectural sketch dataset (Sketch) is also used to validate the superiority of the proposed method.

KEYWORDS

generative adversarial networks; self-adaptive sparse transform module; self-sparse generative adversarial network (Self-

Sparse GAN)

unsupervised generation model based on game theory,

and widely used to learn complex real-world distributions
based on deep convolutional layers” (e.g. image generation).
However, despite its success, training GANS is very unstable, and
it may have problems such as gradient disappearance, divergence,
and mode collapse”. The main reason is that training GANs
needs to find a Nash equilibrium for a non-convex problem in a
high dimensional continuous space®. In addition, it is pointed out
that the loss function used in the original GANs'" causes the zero
gradient problem when there is no overlap between the generated
data distribution and the real data distribution®.

The stabilization of GAN training has been investigated by
either modifying the network architecture®™ or adopting an
alternative objective function®”. However, these methods do not
reduce the high-dimensional parameter space of the generator.
When the task is complex (including more texture details and
with high resolution), we often increase the number of
convolution kernels to enhance the capability of the generator.
Nevertheless, we do not exactly know how many convolution
kernels are appropriate, which further increases the parameter
space of the generator. Therefore, it is reasonable to speculate that
a parameter redundancy exists in the generator. If the parameter
space of the generator can be reduced, both the performance and
training stability of GANSs will be further improved.

Motivated by the aforementioned challenges and the sparsity in
deep convolution networks™', we propose a self-sparse

Generative adversarial networks (GANs)" are a kind of

generative adversarial network (Self-Sparse GAN), with a self-
adaptive sparse transform module (SASTM) after each
deconvolution layer. The SASTM consisting of the sparsity
decomposition and feature-map recombination is applied on
multi-channel feature maps of the deconvolution layer to obtain
sparse feature maps. The channel sparsity coefficients and position
sparsity coefficients are obtained by using a two-headed neural
network to transform the latent vector in the sparsity
decomposition. Then, the sparse multi-channel feature maps are
acquired by a superposition of the channel sparsity and position
sparsity, which can be obtained by the feature maps multiplying
the corresponding sparsity coefficients. The corresponding
sparsity coefficients will alleviate the zero gradient problem by
maintaining meaningful features in the batch normalization (BN)
layer and driving the weights of deconvolution layers away from
being negative. Meanwhile, the sparse feature maps will free some
of the convolution kernels, that is, the weights do not affect the
model, thus reducing the parameter space.

Our contributions. We propose a novel Self-Sparse GAN, in
which the training of generator considers the adaptive sparsity in
multi-channel feature maps. We use the SASTM to adaptively
implement the sparsity of the feature map, and theoretically prove
that our method not only reduces the search space of the
convolution kernel weight but also alleviates the zero gradient
problem. We evaluate the performance of proposed Self-Sparse
GAN using the MNIST", Fashion-MNIST", CIFAR-10"", STL-
10", mini-ImageNet", CELEBA-HQ", LSUN bedrooms”’, and

1 Labortoray of Artificial Intelligence, Harbin Institute of Technology, Harbin 150001, China
2 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
3 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Address correspondence to

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

68 CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—78

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26599/AIR.2022.9150005

Self-Sparse Generative Adversarial Networks

Sketch datasets. The experimental results show that our method
achieves the best Fréchet inception distance (FID) scores for
image generation compared with Wasserstein GAN with gradient
penalty (WGAN-GP)"", and the relative decrease of FID"! is
4.76%-21.84%.

1 Related Work

Generative adversarial network. GANs"' can learn the data
distribution through the game between the generator and
discriminator, and have been widely used in image generation’,
video generation™, image translation®, and image inpainting™.

Optimization and training frameworks. With the
development of GANs, more and more researchers are committed
to settling the training barriers of gradient disappearance,
divergence, and mode collapse. In Ref. [5], noise is added to the
generated data and real data to increase the support of two
distributions and alleviate the problem of gradient disappearance.
In Ref. [10], the least squares loss function is adopted to stabilize
the training of the discriminator. Wasserstein GAN (WGAN)"
uses the earth mover’s distance (EMD) instead of the Jensen-
Shannon divergence in the original GAN, which requires the
discriminator to satisfy the Lipschitz constraint and can be
achieved by weight clipping. Because weight clipping will push
weights towards the extremes of the clipping range, WGAN-GP""
uses the gradient penalty to make the discriminator satisfy the
Lipschitz constraint. Another way to enforce the Lipschitz
constraint is proposed in Ref. [12] by spectral normalization. A
series of adaptive methods with the transformation of the latent
vector to get additional information are also widely used in GANs.
Reference [26] uses an adaptive affine transformation to utilize
spatial feedback from the discriminator to improve the
performance of GANs. Reference [27] uses a nonlinear network to
transform the latent space to obtain the intermediate latent space,
which controls the generator through adaptive instance
normalization (AdaIN) in each convolutional layer. In Ref. [28], a
nonlinear network is used to transform the latent vector to obtain
the affine transformation parameters of the BN layer to stabilize
the GAN training. Sparse generative adversarial network
(SPGAN)™ creates a sparse representation vector for each image
patch and then synthesizes the entire image by multiplying
generated sparse representations to a pre-trained dictionary and
assembling the resulting patches. Based on a GAN, Liu et al."
proposed Task-Oriented GAN to tackle difficulties in PolSAR
image interpretation, including PoISAR data analysis and small
sample problems.

Sparsity in convolutional neural networks. Deep convolution
networks have made great progress in a wide range of fields,
especially for image classification™. However, there is a strong
correlation between the performance of the network and the
network size"™, which also leads to parameter redundancy in deep
convolutional networks. The sparse convolutional neural
networks™ uses sparse decomposition of the convolution kernels
to reduce more than 90% parameters, while the drop of accuracy
is less than 1% on the ILSVRC2012 dataset. Reference [14]
proposes L, norm regularization for neural networks to encourage
weights to become exactly zero to speed up training and improve
generalization.

A new feature selection algorithm is proposed, where the
algorithm utilizes the residual term in sparse regression to ensure
that the learned low-dimensional subspaces have greater fault
tolerance™. Shang et al® proposed a new feature selection
method (named SLMEA), which combines the sparse transform

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

representation with pseudo-label matrix learning to guide the
learning of sparse low-dimensional space.

2 Self-Sparse GAN

Motivated by the aforementioned challenges, we aim to design the
generator with a mechanism, which can use fewer feature maps to
learn wuseful representations. Inspired by the dual attention
network (DANet)™, we first design a two-headed neural network
to transform the latent vector to obtain the channel sparsity
coefficient and position sparsity coefficient of the multi-channel
feature maps. Second, we multiply the multi-channel feature maps
by the channel sparse coefficient and position sparse coefficient,
respectively. Then, we add the results to get the output of SASTM.

The differences and improvements between the SASTM and
DANet are as follows: (1) SASTM is used for the image generation
task, while DANet is used for the scene segmentation task; (2)
SASTM can obtain sparse multi-channel feature maps by the
proposed sparsity decomposition and feature-map recombination;
and (3) SASTM can adaptively reduce the parameter space and
alleviate the zero gradient problem.

The proposed Self-Sparse GAN adds an SASTM behind each
deconvolution layer of the generator. Self-Sparse GAN only
modifies the architecture of the generator, and its conceptual
diagram is shown in Fig. 1.

We define the process of transforming the planar size of the
feature map from Hx W to 2H x 2W as a generative stage. For
example, when the pixel resolution of the generated image is
128 x 128, the hierarchical processes of feature map generation
Z—4%x4—8x8—=16x16 — 32x32 — 64X 64 — 128 x 128
are defined as different stages in the generator. Stage ¢t = 3 refers
to 8 x 8 — 16 x 16, where t € {1, 2, 3, 4, 5, 6} and T = 6 denotes
the total number of stages.

2.1 SASTM: Self-adaptive sparse transform module

SASTM includes the sparsity decomposition and feature-map
recombination. The sparsity decomposition consists of channel
sparsity module (CSM) and position sparsity module (PSM) to
obtain the channel sparsity coefficient and position sparsity
coefficient.

As illustrated in Fig. 2, a two-headed neural network will be
employed to obtain the corresponding sparsity coefficients. In the
two-headed neural network, the underlying shared layers
multilayer perceptron (MLP) are defined as f*, and the exclusive
networks are g and g, respectively. af >0 and f;, >0 can be
obtained as follows:

o =ReLU(g (' (2))) (1)
B =ReLU(g, (f'(2))))
where Eqgs. (1) and (2) represent CSM and PSM, respectively.
Repeat
| R

Tanh

(BN & ReLU)

=
o
=
=)
o
>
c
o
(8]
5]
o

N
I' Decon.volutionq]

Image

Fig.1 Concept diagram of the modified generator in the Self-Sparse GAN.
Deconvolution, BN, ReLU, and Tanh represent the deconvolutional layer,
the batch normalization layer, rectified linear activation function, and tanh
activation function, respectively.

69

CAAI Artificial Intelligence Research

———————————————————————————

Feature-map recombination

Sparsity decomposition
Qﬁ'Matrix multiplication operation (j Sum @ RelLU

t t t t
afxh; B kxhi ;«

Fig.2 Concept diagram of the self-adaptive sparse transform module.

« € R” and B, € R"™" are coefficients of the channel sparsity
and position sparsity, respectively. When «; =0 and g, = 0, the
corresponding channel and spatial location will become useless,
respectively.

Suppose that the output after the deconvolution layer is
hi;, € RV, where C',H', and W' represent the number of
channels, height, and width of the feature maps, respectively. The
feature-map recombination will be calculated as follows:

x:,j.k = “z{ X hf.j,k +ﬂ;.k X h:;k (3)

where x{,, € R™*"*"is sparse feature maps. Therefore, SASTM is
the superposition of channel sparsity and position sparsity.

The sparse rate of position sparsity in the i-th channel is
defined as follows:

. crad ({xgj;\cjk = 0}) “

where crad (-) is used to signify number of elements in the set. If
& > 2/3, the i-th channel is regarded to be sparse.
The sparse rate of the channel sparsity is defined as follows:

‘- crad ({ff &> 2/3})

Ct
In the back propagation (BP) process, the derivatives of loss

function with respect to ki, &}, and ﬂ;_k are calculated as follows:

(5)

v, —v, (P _y (@+p)
M — ¥ Mk ahf.j.k =V, ﬁj,k’

Iaxt.
_ ijk | '
Vﬁ,’k - Vx:.J.k (P) ﬁ;k) - foq.kh"»ﬂk (6)

2.2 Mechanism analysis of SASTM

To analyze the role of the SASTM, we select the t-th generation
stage as shown in Fig. 3.

For the convenience of discussion, we assume that the
dimensions of the input and output feature maps of the
deconvolution layer remain the same (C' x H' x W").

Meanwhile, the size of the deconvolution kernel is 1x 1. The
feedforward process is expressed as follows:

<, = (aﬁzv;,[ya;;k+ﬁ;,k):v;_iy;;.;,k) ,
¥, = max {gh, (+,).0})

70

Fig.3 The concept diagram of the t-th generation stage. y/ 1, 4! ;> x> 51,
and y;, represent the output feature maps of the previous ReLU,
deconvolution, SASTM, BN, and ReLU layers, respectively, and their
dimensions are C' x H' x W'.

where v/, denotes the corresponding deconvolution weight, y;,
denotes the element of position j, k in the m-th channel, and ¢}
denotes the BN operation.

In the BP process, the derivatives of the loss function with
respect to v;, , &, and 3, are calculated as follows.

vV, — V}/fj,k(‘xf +ﬁ;_k)ytm.}.ka (Pim ('x:,j,k) > 05 8)
oo 9} (%) <O
Vyf;k Z Vlm.xyi;.},k’ (pllm (‘xﬁ.j‘k) > 0;
Vo = ")
0, 9 (6,) <O
Vyf.j.k ZV;.iy;,},kv (P:m (xf.j.k) > 0;
Vg, = " (10)

0’ ¢:7n (x:jk) < O

Intuitively, whether ! and ﬁ;)k are equal to zero or greater than
zero will remain unchanged after certain training steps. Therefore,
we make the following assumption.

Hypothesis 1. When « and 8, have represented the
significance of channel and position sparsity, their signs will
remain unchanged.

In this section, we prove that the proposed SASTM plays the
following three roles.

(1) Reducing the search space of convolution parameters in
the generator. In Eq. (7), the dimension of the deconvolution
kernel weight v/, is C'x C'. Find Vi€ A C {1,2,...,C'}, where
a/=0, and Vj€ {1,2,... . H'}, Vk € {1,2,... W'}, where 8, =0
then x; , =0,V, =0 for all times from Hypothesis 1, which
indicates that the i-th channel will no longer work in both
feedforward and backward processes in training. Consequently,
the dimensions of the valid convolutional kernels are
(C'—JA])x C, thus reducing the search space of the
convolutional parameters in the generator.

(2) Maintaining meaningful features in the BN layer to
alleviate the zero gradient problem. For the convenience of
discussion, we do not consider the affine transformation in the
BN layer. At the same time, because dividing by the standard
deviation in the BN layer will not change the sign, we also ignore
the standard deviation in the BN layer for the remainder of the
discussion. x;;, can be divided into two parts {x! ,|x,, <0} and
{x!;| %, >0}. When {x,|x, <0} passes through the BN
layer, a part of its value will become greater than zero in
feedforward and thus mitigate the zero gradient problem in
backward. Here, we ignore the part still less than zero. Therefore,
in the following discussion, we assume x{;, > 0, and denote the
positive values as x,, = {¥,[|¢, >0}, de€{1,2,....D},
ec{1,2,...,E}.

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—78

Self-Sparse Generative Adversarial Networks

According to the definition of the sparse rate of position

sparsity, DE = (1— &) H'W'. Therefore, the computation of the
BN layer can be expressed as
1
Sijk = Xiju— T Z'xﬁ'k =
J o H W J (1 1)
'x:,j,k DE lede = x.l _gf)naf

where ji; = Y. X!, / DE > 0 and s, is the value of x;,, after passing
through BN.

The conditional ~probability —of (si,, <O0|x/, >0) is
P(x,, — @ <0). In addition, considering the position sparsity in

%, the aforementioned probability is approximated as
P(x,, —(1—¢&)i <0), where
P(xde Au <O) (:dn_(l_fxt)ﬂi<fhai) > (12)
P (%, — (=)@ <0)

From Eq. (12), when position sparsity exits in x,, the
probability of s, <0 will decrease, which increases the
probability y! ., > 0 from Eq. (7). In addition, a larger & will lead
to a lower probability of s;;, < 0. Therefore, the gradient in the
backpropagation will not disappear. In other words, when o! and
ﬂ;k have already determined the sparse channels and spatial
locations, SASTM will reduce the likelihood that useful feature
information is dropped after passing through the BN layer, thus
maintaining meaningful features to alleviate the zero gradient
problem.

(3) Driving the convolutional weights away from being
negative. From the above derivation, the probability that x| ,, is
less than zero after passing through the BN layer can be reduced
when the proposed SASTM is implemented into the network, and
a larger position sparsity rate &; leads to a smaller probability.
Therefore, for convenience, we will not consider the BN layer in
the discussion below.

When V,; >0 and x;;, >0, it can be inferred V,; > 0 from
Eq. (8), and then v, wﬂl decrease in the gradlent descent
algorithm. Similarly, accordmg to Egs. (9) and (10), V,; > 0 and
Vi, >0 can be inferred, and thus of and p;, will decrease.
However, from Hypothesis 1, ; and f;, will not be less than zero.
According to Eq. (8), V., is obtained by the factors «; and ..
Therefore, the decrease of v/, , is suppressed.

When V,, <0 and x|, > 0, it can be inferred V,, < 0 from
Eq. (8), and then v, will increase. Similarly, accordmg to Eq. (9)
and Eq. (10), V,; <0 and V,;}zk < 0 can be inferred, and thus o
and ﬁ; . will increase. Therefore, the increase of v/, ; is promoted.

Therefore, the proposed SASTM enables to drive convolutional
weights away from being negative. This phenomenon has been
similarly reported as the channel scaling layer™.

3 Experiment and Discussion

3.1 Baseline model: WGAN-GP
WGAN-GP" has good theoretical and stability properties in
practice, and a zero-centered gradient penalty further enhances
the convergency”. Therefore, WGAN with a zero-centered
gradient penalty is adopted as the baseline for comparison with
our method, and the objective function is as follows.

min max V(G.D) =E, , [D(x)] ~ E..,. [D(G(2))] -

MEes, [IV:D)] o

where E denotes the mean symbol, and x, z, A and X represent

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

the real data, latent vector, gradient penalty coefficient, and
random samples with sampling uniformly along straight lines
between pairs of real data and fake data"".

3.2 Experimental settings

We test the proposed Self-Sparse GAN using a DCGAN-like”
network architecture on the following datasets: (1) MNIST: 60
thousand grayscale images; (2) Fashion-MNIST: 60 thousand
grayscale images; (3) CIFAR-10: 60 thousand RGB images; (4)
STL-10: 100 thousand RGB images; (5) mini-ImageNet: 60
thousand RGB images; (6) CELEBA-HQ: 30 thousand RGB
images; and (7) LSUN bedrooms: 3 million RGB images. Details
of Self-Sparse GAN are referred to the Appendix. The investigated
resolutions of the generated images are listed in Table 1.

We use the Adam" optimizer and set the learning rates of
generator and discriminator as 0.0001 and 0.0003 on all datasets
as suggested in Ref. [21]. Because multiple discriminator steps per
generator step can help the GAN training in WGAN-GP, we set
two discriminator steps per generator step for 100 thousand
generator steps. We set betas (0.5, 0.999) for MNIST, Fashion-
MNIST, CIFAR-10, STL-10, and mini-ImageNet, and (0.0, 0.9)
for CELEBA-HQ and LSUN bedrooms.

For the evaluation of model sampling quality, we use FID® as
the evaluation metric, which can measure the distance between
the real and generated data distributions. A smaller FID indicates
better qualities of the generated images. The FID is calculated as

2
el + Tr(var(x) +var(g) — 2

var(x)var(g))
(14)

where T (-), 4, and var (-) denote the trace of a matrix, mean, and
convariance, and x and g denote the real and generated data,
respectively. To obtain training curves quickly, the FID is
evaluated every 500 generator steps using the 5 thousand samples.

3.3 Results

Figure 4 shows two representative FID curves on MNIST and
CIFAR-10. Figure 4 indicates that our method converges faster in
the same FID level. Table 2 shows the mean and standard
deviation of the best FIDs on all datasets. Experimental results
show that our method reduces FIDs on all datasets and the
relative decrease of FID is 4.76%-21.84%. Although the Self-
Sparse GAN does not significantly exceed the baseline on
CELEBA-HQ with the resolutions of 64x64x3, the relative
decrease of FID is still close to 5%. Meanwhile, these results
demonstrate that our method can both improve the generation
quality of grayscale and RGB images. In addition, the relative
improvement of model performance increases with the resolution
of generated images from 64x64x3 to 128x128x3 on
CELEBA-HQ and LSUN bedrooms.

Table1 Investigated pixel resolutions of generated images.

Dataset Pixel resolution of the generated image

MNIST 32x32,128x128

Fashion-MNIST 64x64, 128x128
CIFAR-10 128x128x3
STL-10 64x64x3
mini-ImageNet 32x32x3, 64x64x3
CELEBA-HQ 64x64x3, 128x128x3

LSUN bedrooms 64x64x3, 128x128%3

7

CAAI Artificial Intelligence Research

200
175 ¢
150
125t

2 100 +
75
50
25t

— WGAN-GP
—— Self-Sparse GAN

0 20 000 40000 60000 80000 100 000
Step
(a) MNIST (pixel resolution 128x128)

200
180 |
160
140

a 120 F

& 100t
80 -
60 |
25t

— WGAN-GP
—— Self-Sparse GAN

0
0 20 000 40000 60000 80000 100000
Step
(b) CIFAR-10 (pixel resolution 128x128x3)

Fig.4 FID training curves on MNIST and CIFAR-10, depicting the mean performance of three random trainings with a 95% confidence interval.

Table2 Comparison of FIDs between our proposed Self-Sparse GAN and the baseline WGAN-GP. The mean and standard deviation of the FID are calculated

through three individual trainings with different random seeds.

Dataset Pixel resolution Model FID Dataset Pixel resolution Model FID
WGAN-GP 7.43 £0.28 WGAN-GP 33.16 £ 0.02
32x32x1 32x32x3
MNIST Self-Sparse GAN 6.26 + 0.64 mini- ImageNet Self-Sparse GAN ~ 28.88 +0.37
(Grayscale) WGAN-GP 1042 £ 0.86 (RGB) WGAN-GP 5881 +3.28
128x128x1 64x64x3
Self-Sparse GAN ~ 8.32 +1.03 Self-Sparse GAN 54.78 +0.28
WGAN-GP 20.37 £ 0.87 WGAN-GP 15.95 +0.44
64x64x1 64x64%3
Fashion- MNIST Self-Sparse GAN 1592+ 1.10 CELEBA- HQ Self-Sparse GAN 15.19+0.18
(Grayscale) WGAN-GP 20.41 £ 0.70 (RGB) WGAN-GP 32.40 + 2.03
128x128x1 128x128%3
Self-Sparse GAN 17.67 + 0.87 Self-Sparse GAN 27.72 + 1.54
_ WGAN-GP 43.77 £2.10 WGAN-GP 59.12 £ 0.95
Cl(l;;él;)lo 128x128x3 64x64%3
Self-Sparse GAN 36.69 + 1.53 || [SUN bedrooms Self-Sparse GAN 55.06 + 2.00
. WGAN-GP 63.88+ 1.33 (RGB) WGAN-GP 102.16 + 0.85
STL-10
64%x64%3 128x128%3
(RGB) Self-Sparse GAN 5623 + 1.38 Self-Sparse GAN 84.78 +2.89

3.4 Ablations

To investigate the effects of CSM and PSM in the proposed
SASTM, we perform ablation studies on Fashion-MNIST and STL-
10. “Without PSM” represents using CSM only and fj, =0.
Similarly, “without CSM” represents using PSM only and ! = 0.
As shown in Table 3, the model performance has a significant
improvement on Fashion-MNIST and STL-10 when both CSM

Table3 Comparisons of FIDs in ablation studies on Fashion-MNIST and
STL-10.

Dataset Pixel resolution Method FID
WGAN-GP 20.41 +0.70
Self-Sparse GAN 17.67 + 0.87

Fashion-MNIST 128x128x1
Without PSM 21.51+0.29
Without CSM 163.71£3.99
WGAN-GP 63.88 +1.33
Self-Sparse GAN 56.23 + 1.38
STL-10 64x64x3

Without PSM 60.85 + 0.99
Without CSM 64.87 £ 1.71

72

and PSM are applied. Since the position sparsity coefficient ' is
shared by all channels, it is difficult to represent the pixel-wise
sparsity among different channels without o'. Therefore, using
only PSM may not function well. Furthermore, when only CSM is
used, the model may lack generation power. Figure 5 also shows
that using only CSM on the Fashion-MNIST dataset causes the
multi-channel feature maps too sparse, which will suppress the
model performance.

Robustness to hyperparameters of Adam training. GANs are
very sensitive to hyperparameters of the optimizer. Therefore, we
evaluate different hyperparameter settings to validate the
robustness of our method. We test two popular settings of betas in
Adam: (0, 0.9) and (0.5, 0.999). Table 4 compares the mean and
standard deviation of FID scores on STL-10. It suggests that the
proposed Self-Sparse GAN consistently improves model
performance.

Robustness to network architectures. To further test the
robustness of the proposed Self-Sparse GAN to different network
architectures, we use two common network architectures from
DCGAN and ResNet on STL-10. Tables 5 and 6 give the details.
Table 7 shows the FID scores using different network
architectures on STL-10, which shows that our method is robust
to both DCGAN and ResNet network architectures.

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—78

Self-Sparse Generative Adversarial Networks

i e 815 P o - =] = [e o [S [A [T

HIIIHIIIIIIHIII 15 e e o o
i3 O o o [
IR EEEEE RN E D B A
ArEEEaNEAEEEENEE ISR EEET Y I NN EEEEEEE | °

|IlIIHIHII!I!!IIH |HIIEIIIIIIIII!II |lllllllllllllllﬂ
[e i o e e o o o o o o o
PSANNEIEEEEEEEND I NSNS S NS snnnnEnn s annenns | _,

WGAN-GP

Self-Sparse GAN

Self-Sparse GAN Without PSM

Fig.5 Ablation study. Using only CSM causes too sparse multi-channel feature maps. The colorimetric scale represents the values of the pixel points in a

feature map.

Table4 Comparisons of FID in the robustness experiments on STL-10
with different Adam hyperparameter settings.

Table7 Comparisons of FID in the robustness experiments on STL-10
with different network architectures.

Dataset Betas Method FID
0,0.9 WGAN-GP 63.88 £1.33
0,0.9 Self-Sparse GAN 56.23 +1.38
STL-10
0.5,0.999 WGAN-GP 67.13 £0.77
0.5, 0.999 Self-Sparse GAN 56.51 + 1.62

Dataset Architecture Method FID
WGAN-GP 63.88 +1.33
DCGAN
Self-Sparse GAN 56.23 + 1.38
STL-10
WGAN-GP 65.16 + 5.96
ResNet
Self-Sparse GAN 60.31 +4.29

Table5 The SASTM Architecture on STL-10 with 128x128x3 resolution.

Layer Operator
f Linear: z € R?® ~ N(0,1) —256, ReLU
& Linear: 256—M_, ReLU
& Conv or DeConv. 16 x 16 — M}, X M,,, ReLU

Table6 ResNet Generator and Discriminator in the robustness experiment
on STL-10.

Model Layer
z€ R ~ N(0,1)
First DeConv. 4x4, stride =1, padding =0,
block SASTM
BN-512, ReLU, Upsample-2,
Conv. 3x3, stride=1, padding=1,
BN-256, ReLU,
Conv. 3x3, stride=1, padding=1,
SASTM
BN-256, ReLU, Upsample-2,
Conv. 3x3, stride=1, padding=1,
BN-128, ReLU,
Conv. 3x3, stride=1, padding=1,
SASTM
Conv. 4x4, stride=2, padding=1,
IN-64, LeakyReLU,
Conv. 3x3, stride=1, padding=1,
IN-128, LeakyReLU,
Conv. 3x3, stride=1, padding=1,
Downsample-0.5,
IN-128, LeakyReLU,
Conv. 3x3, stride=1, padding=1,
IN-256, LeakyReLU,
Conv. 3x3, stride=1, padding=1,
Downsample-0.5

ResNet

block
Generator

ResNet
block

Discriminator

3.5 Visualization of SASTM features

To illustrate the function of SASTM, we visualize the multi-
channel feature maps of each deconvolution layer in the generator
on MNIST with a pixel resolution of 128x128. Figure 6 shows
multi-channel feature maps in all representative levels of 64 x 64,

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

32x 32,16 16,8 x 8,and 4 x 4.

Results show that the proposed Self-Sparse GAN learns to pick
useful sparse convolutional kernels instead of using all kernels
greedily. It also proves that our method can obtain sparse multi-
channel feature maps, thus reducing network parameters.

Validation of Hypothesis 1. We can verify this hypothesis by
visualizing feature maps under different training steps on MNIST,
as shown in Fig. 7. The results illustrate that the sign of af and §;,
will remain unchanged after 5000 generator steps. This
phenomenon verifies the Hypothesis 1.

3.6 Investigation of relationship between sparsity and FID

In Section 2.2, we have proved that the proposed SASTM will
alleviate the zero gradient problem and thus improve the model
performance. To analyze the relationship between model sparsity
and FID quantitatively, we define the average position sparsity rate

Eof the generators as
1S,

We select the same network architecture to calculate the
corresponding average position sparsity rate according to Eq. (15),
as shown in Table 8. From the data, it indicates that a higher
average position sparsity rate may lead to a greater improvement
in FID except on the mini-ImageNet with 64 x 64 resolution and
CIFAR-10 with 128 x 128 resolution, which will be further
investigated in the future study. The Pearson’s coefficient is used
to measure the correlation between the average position sparsity

rate and FID as
p@w):E[@_ya("_m)} (16)

00,

where £ and # denote the average position sparsity rate and the
relative decrease of FID, respectively. A positive correlation
between the average position sparsity rate and FID is found.
When the pixel resolution of the generated image is 64 X 64,
Pearson’s correlation coefficient is 0.62. When the pixel resolution
of the generated image is 128 x 128, Pearson’s correlation
coefficient is 0.79. Meanwhile, with the increase in resolution,
Pearson’s correlation coefficient will increase.

73

CAAI Artificial Intelligence Research

(a) Feature

| pEEREREE ISR CREEE
| pEEEEOEE s EEEEE
| BRI EEEE AN
| B EEER RSN RARES
| B RETEEER D ANEED
| ppER DR
L
e
| s EnEaTEERETEnEs
| e enEERREEEREE
| pRECEEDAREREESE
| FEEEEAIE RN ERERE
| oEEEEEREREEEEE
| aEoEEE s EEERERER
| smmpnEREEENCREDE
T ———r———
epmvaipabtvammapml
IREXEREEGEE RSN

1

Self-Sparse GAN
map size 4x4
———————————————— 1
EIII!III!BII.IIII
EENEE N EEENNENENI
IIE!IIHIIIIIHIIl
EEEENEANENERRENN
FENENNENNEENEEBN)|
BI!IHIIHIIIIIIII
BEHEENNEENNEONNERESE
ENNENNDNNNENNNNS|
HE NN FENDNREEEEN 0
FEENE N E AN N
INENERNEEREREEENE,
BN EFEEDNHEERDNDNSEG®EN
IIHEEI!BIIIIHIl
EEEIIIIHHHIHI|
BN NEFESEEEEENGEENN
ENANEERENEERERNEERNHEN,|]
Self-Sparse GAN

b) Feature

|Illllllﬂﬁ.llﬂlﬂl
IHIﬂﬁﬂ!iﬂﬁlﬂﬂlﬂﬂl
|Hl!lIllIIlllIIl-
BEEEYHENEERIREEERR
I

| e A P 5
'IIIIIHIIHIIIHEIE

map size 8x8

EIHIIHEEIIIEI=EII
EIIIEIIEIIEEEIIH'
Ellllﬂlﬂlll!!lﬁll
IHIIIHI!IIHIII?II

Self-Sparse GAN

(c) Feature map size 16x16

P —— e — — —

IEEEDEEE
EEEERERER
EEEEEHEE
EFEEDEEE
EDECEEEN
NEN N ENER
DENGEDEE

o)

P Self-Sparse GAN
(d) Feature map size 32x32

IIIIIEEIH[HHEE!HII EEEEERGE
HEEEEEEE S=INsEnn
EEERNERE S EﬂIIIIIIIL

Self-Sparse GAN

WGAN-GP
(e) Feature map size 64x64

Fig.6 Visualization of the feature map of the SASTM output. The colorimetric scale represents the values of the pixel points in a feature map. It can be
observed that Self-Sparse GAN learns to pick useful convolutional kernels instead of using all convolutional kernels for image generation. In (a), we can observe
that some sparse feature maps have regular feature points, which means that the PSM is working.

3.7 Sketch datasets

Architectural art shape sketches reflect the understanding of
design goals, art styles, and local culture, which can not only
present the designer’s initial design ideas but also inspire new
afflatus in turn. However, in contrast to other types of images,
architectural shape sketches are composed of lines or edges, and
contain significant amounts of blank space. Thus, sparsity is

74

supposed to exist in a sketch image, which can be used to validate
the superiority of the proposed Self-Sparse GAN. To this end, we
collected building shape images and processed them to obtain a
Sketch dataset of building shapes. The network architectures of
Self-Sparse GAN and WGAN-GP are the same as Fashion-
MNIST and the pixel resolution is 128 x 128.

Table 9 gives the FID scores of WGAN-GP and Self-Sparse
GAN on the Sketch dataset, which shows that our method also

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

Self-Sparse Generative Adversarial Networks

VEOE®TM
G

RENENE

B

B[] o o
EENNEEN

Step 50 000
feature map size 32x32

Fig.7 Validation of Hypothesis 1 on MNIST with the pixel resolution of 128x128.

Table8 Relationship between sparseness and FID with the same network

outperforms WGAN-GP on the architectural sketch dataset.

architecture.

Figure 8 gives the sketches generated by the proposed Self-Sparse
GAN and WGAN-GP. The results show that these sketches

Pixel Average position FID reduction . o

resolution Dataset sparsity rate (%) generated by WGAN-GP often lack local details and realistic
STL-10 0.44 11.97 textures. For example, it can be observed that meaningful
o architectural features are not found in the first sketch by WGAN-
64x64 mini-TmageNet 047 683 GP in Fig. 8a, and the fifth sketch by WGAN-GP in Fig. 8a learns
CELEBA-HQ 0.26 4.76 the outline of the building, but the local details and realistic
LSUN bedrooms 0.39 6.86 textures are missing. In addition, blurring often occurs in the
generated sketches with a much greater probability when using
MNIST 0-53 20.21 the WGAN-GP as the generator. These results also illustrate that
CIFAR-10 0.47 16.17 the proposed method can perform the intelligent design of

128x128 . .
CELEBA-HQ 021 14.43 architectural sketches. More details of the autonomous early-stage
design of architectural sketches by using the Self-Sparse GAN can

LSUN bedrooms 0.31 17.02

Table9 FIDs with WGAN-GP and Self-Sparse GAN on the Sketch.

be found in Ref. [38].
To further illustrate the superiority of our method, we selected
the self-attention generative adversarial networks (SAGAN)" for

Dataset Method FID comparison in CELEBA-HQ with the pixel resolution of
Seetch WGAN-GP 76.68 + 1.03 128%128x3 and Sketch™ w.ith the pixel resolution of 128x128x1.
etc Self-SparseGAN 67.58 + 0.89 Table 10 shows the comparison of WGAN-GP, SAGAN, and Self-
Sparse GAN, indicating our method is better than both WGAN-
’#%"n. 7 :&}‘J ’_‘E' ’r“" M b
Ko @@\;@

]]/l / \ . 7
R

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

(a) WGAN-GP

Fig. 8 Generated architectural shape sketches by Self-Sparse GAN and WGAN-GP.

(to be continued)

75

CAAI Artificial Intelligence Research

(Continued)

/ﬁ TR

(b) Self-Sparse GAN
Fig.8 Generated architectural shape sketches by Self-Sparse GAN and WGAN-GP.

Table 10 Comparison between WGAN-GP, SAGAN and Self-Sparse GAN

256 and IN-256 represent the input of the batch normalization
and instance normalization layer with 256 channels, respectively.

Table A1 Self-Sparse GAN generator and discriminator with 32 x 32
resolution. z € R'° ~ N(0,1) on MNIST and z € R'*® ~ N(0,1) on CIFAR-10.

Generator

Discriminator

Dataset Model FID
WGAN-GP 32.40 +£2.03
CELEBA-HQ SAGAN 30.94 +1.01
Self-Sparse GAN 27.72+1.54
WGAN-GP 76.68 + 1.08
Sketch SAGAN 76.97 £ 1.07
Self-Sparse GAN 67.58 + 0.89

GP and SAGAN.

4 Conclusion

In this study, a self-sparse generative adversarial network (Self-
Sparse GAN) is proposed for the unsupervised image generation
task. By exploiting channel sparsity and position sparsity in multi-
channel feature maps, Self-Sparse GAN stabilizes the training
process and improves the model performance by (1) reducing the
search space of convolution parameters in the generator; (2)
maintaining meaningful features in the BN layer to alleviate the
zero gradient problem; and (3) driving the convolutional weights
away from being negative. We demonstrate the proposed method
on seven image datasets. Experimental results show that our
approach can obtain better FIDs on all the seven datasets
compared with WGAN-GP, and is robust to both training
hyperparameters and network architectures. In addition, a positive
correlation between sparsity and FID further validates that the
proposed sparsity module enhances the image generation power
of the model. Meanwhile, the proposed method also has the ability
to perform the intelligent design of architectural sketches.

Appendix

A MNIST and CIFAR-10

In the following parts, SASTM denotes the self-adaptive sparse
transform module. Conv, DeConv, ReLU, and Tanh represent the
convolutional layer, deconvolutional layer, rectified linear
activation function, and Tanh activation function, respectively. BN-

76

DeConv. 4x4, stride=1, padding=0,

SASTM, BN-256, ReLU,

DeConv. 4x4, stride=2, padding=1,

SASTM, BN-128, ReLU,

DeConv. 4x4, stride=2, padding=1,

SASTM, BN-64, ReLU,

DeConv. 4x4, stride=2, padding=1,

Tanh

Conv. 4x4, stride=2, padding=1,
IN-64, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-256, LeakyReLU

Conv. 4x4, stride=1, padding=0

Table A2 Self-Sparse GAN generator and discriminator with 64 x 64
resolution, z € R'®° ~ N(0,1) on MNIST and z € R'*® ~ N(0,1) on CIFAR-10.

Generator

Discriminator

DeConv. 4x4, stride=1, padding=0,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2, padding=1,
Tanh

Conv. 4x4, stride=2, padding=1,

IN-128, LeakyReLU

Conv. 4x4, stride=2, padding=1,

IN-128, LeakyReLU

Conv. 4x4, stride=2, padding=1,

IN-128, LeakyReLU

Conv.4x4, stride=2, padding=1, IN-

128, LeakyReLU
Conv.4x4, stride=1, padding=0

Table A3 Self-Sparse GAN generator and discriminator with 128 x 128
resolution, z € R ~ N(0,1) on MNIST and z € R'™*® ~ N(0,1) on CIFAR-10.

Generator

Discriminator

DeConv. 4x4, stride=1, padding=0,
SASTM, BN-512, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-256, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-64, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-32, ReLU
DeConv. 4x4, stride=2, padding=1,
Tanh

Conv. 4x4, stride=2, padding=1,
IN-32, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-64, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-256, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-512, LeakyReLU

Conv.4x4, stride=1, padding=0

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—78

Self-Sparse Generative Adversarial Networks

Table A4 SASTM architecture, z<€ R ~N(0,1) on MNIST and ze
R!?8 ~ N(0,1) on CIFAR-10.

Table C2 Self-Sparse GAN generator and discriminator with 128 x 128 x 3
resolution, and z € R'* ~ N(0,1).

Layers Operators Generator Discriminator
‘ Linear: z — 1024, ReLU DeConv. 4x4, stride=1, padding=0, Conv. 4x4, stride=2, padding=1,
Linear: 1024 — 512, ReLU SASTM, BN-512, ReLU IN-32, LeakyReLU
Linear: 512 — M. ReLU DeConv. 4x4, stride=2, padding=1, Conv. 4x4, stride=2, padding=1,
8 inear: 512 = Mo Be SASTM, BN-256, ReLU IN-64, LeakyReLU
o Linear: 512 — 256, ReLU DeConv. 4x4, stride=2, padding=1, Conv. 4x4, stride=2, padding=1,

Conv or DeConv: 16 x 16 — M}, x M,,, ReLU

B Fashion-MNIST

Table B1 Self-Sparse GAN generator and discriminator with 64 x 64 x 1
resolution, and z € R'% ~ N(0,1).

Generator Discriminator

DeConv. 4x4, stride=1, padding=0,

Conv. 4x4, stride=2, padding=1,

SASTM, BN-128, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-64, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-32, ReLU
DeConv. 4x4, stride=2,
padding=1, Tanh

IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,

IN-256, LeakyReLU
Conv. 4x4, stride=2, padding=1,

IN-512, LeakyReLU
Conv. 4x4, stride=1, padding=0

Table C3 SASTM architecture with 64x64x3 and 128x128 x 3 resolutions.

SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,

SASTM, BN-128, ReLU

IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,

IN-128, LeakyReLU

DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2,

padding=1, Tanh

Conv. 4x4, stride=2, padding=1,

IN-128, LeakyReLU
Conv.4x4, stride=2, padding=1,

IN-128, LeakyReLU
Conv.4x4, stride=1, padding=0

Layer Operator
f Linear: z € R ~ N(0,1) — 256, ReLU
a Linear: 256 — M., ReLU
%) Conv or DeConv: 16 x 16 — My, X M,,, ReLU

Table B2 Self-Sparse GAN generator and discriminator with 128 x 128 x 1
resolution, and z € R'®° ~ N(0,1).

D Mini-ImageNet

Table D1 Self-Sparse GAN generator and discriminator with 32 x 32 x 3
resolution.

Generator Discriminator

DeConv. 4x4, stride=1, padding=0,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv.4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2,
padding=1, Tanh

Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU

Conv. 4x4, stride=1, padding=0

Generator Discriminator

DeConv. 4x4, stride=1, padding=0,
SASTM, BN-512, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-256, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2,
padding=1, Tanh

Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-256, LeakyReLU
Conv. 4x4, stride=2, padding=1,
IN-512, LeakyReLU

Conv. 4x4, stride=1, padding=0

Table D2 Self-Sparse GAN generator and discriminator with 64 x 64 x 3
resolution.

Table B3 SASTM architecture with 64 x 64 x 1 and 128 x 128 x 1 resolution.

Generator Discriminator

DeConv. 4x4, stride=1, padding=0,

SASTM, BN-512, ReLU
DeConv. 4x4, stride=2, padding=1,

Conv. 4x4, stride=2, padding=1,

IN-64, LeakyReLU
Conv. 4x4, stride=2, padding=1,

Layers Operators
Linear: z € R ~ N (0,1) — 1024, ReLU
f Linear: 1024 — 512, ReLU
Linear:512 — 256, ReLU
2 Linear: 256 — M., ReLU
5] Conv or DeConv: 16 x 16 — My x M,,, ReLU

SASTM, BN-256, ReLU

DeConv. 4x4, stride=2, padding=1,

SASTM, BN-128, ReLU

DeConv. 4x4, stride=2, padding=1,

SASTM, BN-64, ReLU
DeConv. 4x4, stride=2,

padding=1, Tanh

IN-128, LeakyReLU
Conv. 4x4, stride=2, padding=1,

IN-256, LeakyReLU
Conv. 4x4, stride=2, padding=1,

IN-512, LeakyReLU
Conv.4x4, stride=1, padding=0

C STL-10, CELEBA-HQ, and LSUN bedrooms

Table C1 Self-Sparse GAN generator and discriminator with 64 x 64 x 3
resolution, and z € R'® ~ N(0,1).

Table D3 SASTM architecture with 32 x 32 x 3 resolution.

Generator

Discriminator

DeConv. 4x4, stride=1, padding=0,
SASTM, BN-512, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-256, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-128, ReLU
DeConv. 4x4, stride=2, padding=1,
SASTM, BN-64, ReLU
DeConv. 4x4, stride=2,
padding=1, Tanh

Conv. 4x4, stride=2, padding=1,
IN-64, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-128, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-256, LeakyReLU

Conv. 4x4, stride=2, padding=1,
IN-512, LeakyReLU

Conv.4x4, stride=1, padding=0

Layer Operator
Linear: z € R ~ N(0,1) — 1024, ReLU
f Linear: 1024 — 512, ReLU
Linear: 512 — 256, ReLU
a Linear: 512 — M, ReLU
g Linear: 512 — 256, ReLU
2

Conv or DeConv: 16 x 16 — M;, x M,,, ReLU

Table D4 SASTM architecture with 64 x 64 x 3 resolution.

Layer Operator
f Linear: z € R12® ~ N(0,1) — 256, ReLU
2 Linear: 256 — M., ReLU
o Conv or DeConv: 16 x 16 — M, X M,,, ReLU

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—-78

77

CAAI Artificial Intelligence Research

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 51921006 and 52008138), and
Heilongjiang Touyan Innovation Team Program (No.
AUEA5640200320).

Dates

Received: 26 May 2022; Revised: 7 August 2022; Accepted: 12
August 2022

References

[1] I Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets,
in Proc. 28" Annu. Conf. Neural Information Processing Systems,
Montreal, Canada, 2014, pp. 2672-2680.

[2] A. Radford, L. Metz, and S. Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks,
arXiv preprint arXiv: 1511.06434, 2015.

[3] L. Mescheder, A. Geiger, and S. Nowozin, Which Training Methods
for GANs do actually converge, in Proc. 35" Int. Conf. Machine
Learning, Stockholm, Sweden, 2018, pp. 3481-3490.

[4] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, Improved techniques for training GANSs, in Proc. 30"
Annu. Conf. Neural Information Processing Systems, Barcelona,
Spain, 2016, pp. 2226-2234.

[5] M. Arjovsky and L. Bottou, Towards principled methods for training
generative adversarial networks, in Proc. 5" Int. Conf. Learning
Representations, Toulon, France, 2017.

[6] S. Jenni and P. Favaro, On stabilizing generative adversarial training
with noise, in Proc. 2019 IEEE/CVF Conf. Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 2019, pp.
12137-12145.

[7] T.Karras, T. Aila, S. Laine, and J. Lehtinen, Progressive growing of
GANSs for improved quality, stability, and variation, arXiv preprint
arXiv: 1710.10196, 2017.

[8] H. Zhang, 1. Goodfellow, D. Metaxas, and A. Odena, Self-attention
generative adversarial networks, in Proc. 36" Int. Conf. Machine
Learning, Long Beach, CA, USA, 2019, pp. 7354-7363.

[91 M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN, arXiv
preprint arXiv: 1701.07875, 2017.

[10] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
Least squares generative adversarial networks, in Proc. 2017 IEEE
Int. Conf. on Computer Vision, Venice, Italy, 2017, pp. 2813-2821.

[11]1. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A.
Courville, Improved training of Wasserstein GANS, in Proc. 31"
Annu. Conf. Neural Information Processing Systems, Long Beach,
CA, USA, 2017, pp. 5767-5777.

[12] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, Spectral
normalization for generative adversarial networks, in Proc. 6" Int.
Conf. Learning Representations, Vancouver, Canada, 2018.

[13] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, Sparse
convolutional neural networks, in Proc. 2015 IEEE Conf. Computer
Vision and Pattern Recognition, Boston, MA, USA, 2015, pp.
806-814.

[14] C. Louizos, M. Welling, and D. P. Kingma, Learning sparse neural
networks through L_0 regularization, in Proc. 6" Int. Conf. Learning
Representations, Vancouver, Canada, 2018.

[15]L. Deng, The MNIST database of handwritten digit images for
machine learning research [best of the web], /EEE Signal Process.
Mag., vol. 29, no. 6, pp. 141-142, 2012.

[16] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms, arXiv
preprint arXiv: 1708.07747, 2017.

[17] A. Krizhevsky, Learning multiple layers of features from tiny
images, https://www.cs.toronto.edu/~kriz/learning-features-2009-
TR.pdf, 2009.

[18] A. Coates, A. Ng, and H. Lee, An analysis of single-layer networks
in unsupervised feature learning, in Proc. 14th Int. Conf. Artificial

78

Intelligence and Statistics, Fort Lauderdale, FL, USA, 2011,
215-223.

[19] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D.
Wierstra. Matching networks for one shot learning, in Proc. 30"
Annu. Conf. Neural Information Processing Systems, Barcelona,
Spain, 2016, pp. 3630-3638.

[20]F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, LSUN: Construction
of a large-scale image dataset using deep learning with humans in
the Loop, arXiv preprint arXiv: 1506.03365, 2015

[21]M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.
Hochreiter, GANSs trained by a two time-scale update rule converge
to a local Nash equilibrium, in Proc. 31 Annu. Conf. Neural
Information Processing Systems, Long Beach, CA, USA, 2017, pp.
6626—6637.

[22] A. Brock, J. Donahue, and K. Simonyan, Large scale GAN training
for high fidelity natural image synthesis, arXiv preprint arXiv:
1809.11096, 2018.

[23]Y. Zhou and T. L. Berg, Learning temporal transformations from
time-lapse videos, in Proc. 14" Eur. Conf. Computer Vision,
Amsterdam, The Netherlands, 2016, pp. 262-277.

[24] P. Isola, J. Y. Zhu, T. Zhou, and Alexei A. Efros, Image-to-image
translation with conditional adversarial networks, in Proc. 2017
IEEE Conf. Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 2017, pp. 5967-5976.

[25] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas,
Deblurgan: Blind motion deblurring using conditional adversarial
networks, in Proc. 2018 IEEE/CVF Conf. Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 2018, pp.
8183-8192.

[26] M. Huh, S. H. Sun, and N. Zhang, Feedback adversarial learning:
Spatial feedback for improving generative adversarial networks, in
Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 2019, pp. 1476-1485.

[27] T. Karras, S. Laine, and T. Aila, A style-based generator architecture
for generative adversarial networks, in Proc. 2019 IEEE/CVF Conf.
Computer Vision and Pattern Recognition, Long Beach, CA, USA,
2019, pp. 4396-4405.

[28] T. Chen, M. Lucic, N. Houlsby, and S. Gelly, On self modulation for
generative adversarial networks, arXiv preprint arXiv: 1810.01365,
2018.

[29] S. Mahdizadehaghdam, A. Panahi, and H. Krim, Sparse generative
adversarial network, in Proc. 2019 IEEE/CVF Int. Conf. Computer
Vision Workshop, Seoul, Republic of Korea, 2019, pp. 3063-3071.

[30] F. Liu, L. Jiao, and X. Tang, Task-oriented GAN for PoISAR image
classification and clustering, /EEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2707-2719, 2019.

[31]A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
classification with deep convolutional neural networks, in Proc. 26"
Annu. Conf. Neural Information Processing Systems, Lake Tahoe,
NV, USA, 2012, pp. 1106-1114.

[32] K. Simonyan and A. Zisserman, Very deep convolutional networks
for large-scale image recognition, arXiv preprint arXiv: 1409.1556,
2014.

[33]R. Shang, W. Zhang, M. Lu, L. Jiao, and Y. Li, Feature selection
based on non-negative spectral feature learning and adaptive rank
constraint, Knowl. -Based Syst., vol. 236, p. 107749, 2022.

[34] R. Shang, X. Zhang, J. Feng, Y. Li, and L. Jiao, Sparse and low-
dimensional representation with maximum entropy adaptive graph
for feature selection, Neurocomputing, vol. 485, pp. 57-73, 2022.

[35]J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang and, H. Lu, Dual
attention network for scene segmentation, in Proc. 2019 IEEE/CVF
Conf. Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 2019, pp. 3141-3149.

[36] Y. Wang, Z. Chen, F. Wu, and G. Wang, Person re-identification
with cascaded pairwise convolutions, in Proc. 2018 IEEE/CVF
Conf. Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 2019, pp. 1470-1478.

[37]D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization. arXiv preprint arXiv: 1412.6980, 2014.

[38] W. Qian, Y. Xu, and H. Li, A self-sparse generative adversarial
network for autonomous early-stage design of architectural sketches,
Comput. -Aided Civ. Infrastruct. Eng., vol. 37, no. 5, pp. 612—-628,
2021.

CAAI Artificial Intelligence Research | VOL. 1 NO.1 | 2022 | 68—78

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/TNNLS.2018.2885799
https://doi.org/10.1016/j.knosys.2021.107749
https://doi.org/10.1016/j.neucom.2022.02.038
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/TNNLS.2018.2885799
https://doi.org/10.1016/j.knosys.2021.107749
https://doi.org/10.1016/j.neucom.2022.02.038
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/TNNLS.2018.2885799
https://doi.org/10.1016/j.knosys.2021.107749
https://doi.org/10.1016/j.neucom.2022.02.038
https://doi.org/10.1109/TNNLS.2018.2885799
https://doi.org/10.1016/j.knosys.2021.107749
https://doi.org/10.1016/j.neucom.2022.02.038

	1 Related Work
	2 Self-Sparse GAN
	2.1 SASTM: Self-adaptive sparse transform module
	2.2 Mechanism analysis of SASTM

	3 Experiment and Discussion
	3.1 Baseline model: WGAN-GP
	3.2 Experimental settings
	3.3 Results
	3.4 Ablations
	3.5 Visualization of SASTM features
	3.6 Investigation of relationship between sparsity and FID
	3.7 Sketch datasets

	4 Conclusion
	Appendix
	A MNIST and CIFAR-10
	B Fashion-MNIST
	C STL-10, CELEBA-HQ, and LSUN bedrooms
	D Mini-ImageNet

	Acknowledgment
	References

