
  
 

ISSN 2791-0091 (print); 2790-8119 (online) 
2022, 1(1): 1–8 https://doi.org/10.26599/NRE.2022.9120037 

 

R
ev

ie
w

 A
rti

cl
e

 
 
 
 

The pursuit of commercial silicon-based microparticle anodes for 
advanced lithium-ion batteries: A review 
Qing Liu, Yunhuan Hu, Xinrun Yu, Yufei Qin, Tao Meng, and Xianluo Hu () 

 
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University 
of Science and Technology, Wuhan 430074, China 
 
Received: 30 July 2022 / Revised: 6 October 2022 / Accepted: 7 October 2022 

 

ABSTRACT 
Silicon (Si) is one of the most promising anode materials for high-energy lithium-ion batteries. However, the widespread 
application of Si-based anodes is inhibited by large volume change, unstable solid electrolyte interphase, and poor 
electrical conductivity. During the past decade, significant efforts have been made to overcome these major challenges 
toward industrial applications. This review summarizes the recent development of microscale Si-based electrodes 
fabricated by Si microparticles or other industrial bulk materials from the perspective of industrialization. First, the 
challenges for microscale Si anodes are clarified. Second, structural design strategies of stable micro-sized Si materials 
are discussed. Third, other critical practical metrics, such as robust binder construction and electrolyte design, are also 
highlighted. Finally, future trends and perspectives on the commercialization of Si-based anodes are provided. 
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1 Introduction 
Lithium-ion batteries (LIBs) have become the dominant 
power source in our digital and mobile lifestyle since their 
commercialization by Sony in 1991. However, they have so far 
failed to relieve people’s anxiety about electric vehicles (EVs) 
due to their high cost, short service life, and especially unsatisfied 
energy density compared to petrochemicals. However, a 
universally recognized view is that the traditional lithium 
insertion chemistry (Rock-chair) based on layered oxide 
cathodes and graphite anodes has reached the theoretical 
limit of 350 Wh·kg–1 [1‒3]. To promise a bright future for the 
application of LIBs in EVs, more aggressive battery chemistry, 
such as applying cathodes of oxygen and sulfur and anodes  
of silicon (Si) and metallic Li, is urgently pursued to achieve 
energy density up to 500 Wh·kg–1 [4‒6]. 

Among various non-carbon anode materials, Si has superior 
theoretical specific capacity (4,200 mAh·g–1), attractive voltage 
plateau (0.2–0.4 V vs. Li/Li+), abundant reserves, and low 
development cost (Fig. 1(a)), thus prompting it to become one of 
the most promising anode materials for next-generation LIBs 
[7, 8]. Despite these merits, the progress of replacing graphite 
with Si in the anode of practical LIBs has seriously lagged. Si 
has a relatively low electrical conductivity (< 10–3 S·cm–1) from 
the semiconductor nature, resulting in limited rate performance 
[9–11]. Furthermore, unlike intercalated electrodes, Si as an 
alloy electrode undergoes a large volume expansion (> 300%) 
during lithiation. The tremendous volume change causes a 

large number of compressive and shear stresses. The stress 
exceeding the bearing limit of Si material would trigger bulk Si 
particles suffering from surface cracking, fracture, and eventual 
crushing. As a result, the Si particles will lose electrical contact 
with the collector, greatly reducing cycle life and losing lithium 
storage performance [12, 13]. In addition, the large fluctuations 
in volume tend to deteriorate and thicken the solid electrolyte  
interphase (SEI). Unstable SEI further exacerbates capacity 
decay and reversibility deterioration (Fig.1(b)) [14, 15]. 

 
Figure 1 Overview of Si-based anodes for LIBs: (a) merits and (b) 
fundamental challenges. Reproduced with permission from Ref. [16], 
© Wiley-VCH GmbH 2021. 
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Many efforts have been made in recent decades to tackle 
the problems above, such as structure design [17‒19], surface 
modification [20], binder and electrolyte design [21, 22]. The 
study of Li-Si alloy as anode materials in high-temperature 
molten salt lithium batteries was first reported in the 1970s 
[23, 24]. Since then, significant progress has been made in the 
research on Si anodes (Fig. 2). Among them, nanotechnology 
has been proven to be one of the effective strategies to buffer the 
significant volume changes of Si during charging/discharging 
processes [25, 26]. It was found that Si exhibits greater resistance 
to mechanical strain and the degree of cracking decreases as the 
size decreases. 150 nm is determined to be a critical size [27]. 
Moreover, a wide range of nanoscale materials, including 
nanowires [28, 29], thin films [30, 31], nanospheres, and 
nanotubes [13], have been investigated to reduce volume 
expansion, and a large number of excellent results have also 
been achieved. Notably, Cui’s group has been working on  
the electrochemical performance and industrialization of Si 
nanowires in LIBs. In 2007, they first used Si nanowires vertically 
aligned on the stainless-steel substrate with a diameter of   
90 nm as anodes of LIBs [32]. In their study, the improved 
performance of the LIBs was attributed to the advanced 
structure of the Si nanowire electrode, which provided enough 
space between the nanowires to release the strain from large 
volume changes, and enhanced the electrical contact between 
the Si nanowires and the substrate. However, scaling up 
manufacturing, increasing production capacity, and reducing 
cost remain challenges for its application of EVs. 

Apart from the typical electrochemical performances of cycle 
life and initial Coulombic efficiency (ICE), gravimetric capacity, 
volumetric capacity, and areal capacity associated with tap 
density and mass loading are key parameters that must be 
considered to achieve Si-based anodes for commercial LIBs [33]. 
Unfortunately, Si nanomaterials have three major drawbacks 
that hinder their practical application. First, although Si 
nanomaterials generally accompany with high gravimetric 
capacity, they display low volumetric capacity due to their 
inherent low tap density, which is not favorable for 
space-conscious EVs [34, 35]. Second, the preparation of Si 

nanomaterials involves a costly and laborious process, which 
makes their scaling up difficult. Third, using nanoparticles in 
electrode production may pose serious health and safety risks 
associated with inhalation or explosion [36]. Recognizing that 
attractive nano-based performance at the laboratory level is 
unlikely to be replicated commercially or in practice, current 
research focuses on microscale Si anodes since it often enables 
higher tap density and generally higher ICE than nanosized 
materials.  

Many informative reviews have appeared on Si-based 
anodes during the past decades [37‒42]. As to micro-sized Si 
anodes, Yi et al. highlighted the advances of using nanoscale Si 
as the building blocks to prepare micro-sized Si anodes [43]. 
In addition, Zhu et al. also took a comprehensive look at 
microscale Si-based anodes from the perspective of practical 
metrics [44]. However, microscale Si-based anodes based on 
commercial microparticles (MP), such as SiMP, SiOxMP, Si-metal 
alloy, and other industrial bulk materials, have not been 
systematically summarized yet, which is significant for the 
industrial application in LIBs.  

In this review, we are committed to summarizing the 
development of the Si-based electrodes fabricated by SiMP  
or commercial Si-based materials from the perspective of 
industrialization, such as raw materials, preparation process, 
yield, and environmental friendliness. To begin with, we 
clarify the challenges for microscale Si anodes. Furthermore, 
we systematically summarize current strategies of structure 
design to maintain electrode structural integrity, suppress volume 
expansion, improve ionic/electronic conductivity, reduce cost, 
and so on. Furthermore, other critical practical metrics, such 
as binder and electrolyte, are also discussed. Finally, an outlook 
on the prospects of future commercialization of Si-based anodes 
is provided. 

2 Challenges for microscale Si anodes 
Research on SiMP anodes dates back to the 1900s, predating 
explosive research on Si nanoparticle (SiNP)-based anodes [45]. 
However, traditional SiMPs are more likely to suffer from 

 
Figure 2 Overview of micro-sized Si anodes: development history of Si anodes and strategies toward commercialization. 



 
 

Nano Research Energy 2022, 1: e9120037 

https://www.sciopen.com | https://mc03.manuscriptcentral.com/nre | Nano Research Energy 

3 

severe particle fracture during alloying processes than nanosized 
materials, leading to rapid capacity decay and battery failure. 

Generally, the lithiation of SiMP can be divided into two 
steps: 1) Li infiltrates the Si lattice at potentials above ~0.1 V 
(vs. Li+/Li): the reaction in this process does not involve 
structural changes or the formation of new phases, in which 
pure Si is lithiated to amorphous LixSi; 2) Lithiated at potentials 
below ~0.1 V (vs. Li+/Li): amorphous LixSi transforms into 
crystalline Li15Si4. The corresponding electrochemical reaction 
are summarized in Eqs. (1)–(4) [46]. 

Lithiation process (“c” refers to “crystalline” and “a” refers to 
“amorphous”): 

–Si (c) Li e Li Si (a)xx x++ +            (1) 
–

15 4Li Si (a) (3.75 )Li (3.75 )e Li Si (c)x x x++ - + -     (2) 

Delithiation process: 

15 4 15 4Li Si (c) Li Si (a) Li Li Si (c, residual)x y + + +   (3) 

–Li Si (a) Si (a) Li ex x x+ + +            (4) 

Because of electrical disconnection of the active Si caused 
by a severe volume change, there are some amounts of Li15Si4 
phase residual after the initial delithiation (Eqs. (3) and (4)), 
which results in a large irreversible capacity [47]. Over the 
complete course of the phase-transition reaction, the two different 
two-phase regions result in inhomogeneous stress growth, 
which may lead to capacity fading. Therefore, maintaining the 
structural stability of Si during cycling is the key to advancing 
practical application [48]. 

To address the deficiencies of traditional MP electrodes, 
engineering the architecture of Si-based materials at the 
micrometric level to improve the overall performance of 
Si-based anodes has regained the attention of researchers due 
to their powerful and comprehensive advantages [49, 50]. To 
achieve satisfactory electrochemical performances, various 
microscale hierarchical particles with intriguing nanoachitectures, 
involving intelligent assembly and nanoparticle-embedded 
architecture have emerged. However, the strategies using SiNPs 
as raw materials are not ideal for practical application [51]. In 
addition, the complex synthesis process of microscale hierarchical 
particles often involves multiple steps such as chemical vapor 
deposition, high-temperature treatment, acid treatment, etc., 
and thus essentially counteracts the low-cost advantages of 
conventional SiMPs [52‒54]. Therefore, it is challenging to 
construct highly stable SiMP electrodes from the perspective 
of simple, scalable, safe, and sustainable technology.  

3 Rational design of micro-sized Si-based 
electrode structure 
Considerable effort has been devoted to improving the cycling 
stability of inexpensive Si-based microparticles (SiMP, SiOxMP, 
Si-metal alloy, and recycling industrial waste) through various 
advanced strategies for direct using them as active components 
in commercial anode materials. These Si-based MP materials 
have overcome the difficulty faced by Si-based anodes at the 
nanometric scale and accelerated the commercialization of 
practical Si-based anode materials. This section is about 
recent developments in the design of Si-based microparticles 
through an in-depth discussion in the hope of inspiring future 
research. 

3.1 Scalable synthesis of micro-sized porous Si (μ-porous-Si) 
μ-porous-Si and Si-based composites have shown great promise 
in practical LIBs. On the one hand, the buffer spaces of porous 
structures can accommodate the volume expansion of Si. On 
the other hand, the adequate pore structure can provide a 
large electrolyte-accessible surface area and appropriate space, 
which shortens a Li-ion transport channel, leading to a better 
high-rate capability (Fig. 3) [55]. However, scalable synthesis 
of μ-porous-Si with good cyclability and low cost remains a 
significant challenge. 

In general, bulk materials used as self-template to form 
porous structure with the combination of the porous structure 
and interconnected bulk skeleton, shows more commercial 
feasibility due to the low cost and feasible fabricating procedures. 
Normally, the methods to fabricate porous Si materials mainly 
include magnesiothermic reduction [51, 56‒58], metal-assisted 
chemical etching [59‒61], template-assisted processes [62], 
electrochemical etching [63], and dealloying of Si metal alloys 
[64, 65]. Many studies have reported the preparation of porous Si 
directly from Si wafers and bulk Si. An attractive study is about 
the design of a mesoporous sponge Si (MSS) (> 20 μm) with an 
optimized pore radius based on continuous media mechanical 
calculation (Fig. 4(a)) [66]. With this unique structure, the 
as-obtained MSS anode retains more than 80% capacity over 
1,000 cycles with high areal capacity (~4.0 mAh·cm–2) and 
limited volume expansion (~30%). Subsequently, the porous 
Si/C electrode prepared by combining MSS with graphite, showed 
small electrode swelling (< 20%) because of the designed porous 
structure [67]. Many pore-making processes from Si wafers 
and bulk Si generally involve high concentrations of HF or 
HNO3, which are unfavorable for environmental protection 
[66, 68‒72]. In the current bulk materials, SiOx has long 
attracted much attention of researchers [73]. To develop materials 
combining the advantages of both micro-sized and nano-sized 
Si materials, Wang’s group has conducted a series of studies on 
the synthesis of micro-sized porous Si/C composites employing 
commercially available bulk SiO as starting materials. They 
have developed a facile route to construct the porous structure 
of interconnected Si and carbon nanoscale building blocks 
(Fig. 4(b)). Benefiting from the designed structure, the obtained 
Si/C composite exhibited high reversibility of 97.8% capacity 
retention after 200 cycles with a high tap density of 0.78 g·cm–3 
[74]. Subsequently, the in-depth investigation revealed that the 
critical Si building block size is 15 nm, enabling a high capacity 
without compromising the cycling stability [75]. Furthermore,  

 
Figure 3 (a) Properties and (b) synthesis methods of μ-porous-Si. 
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a high areal capacity of 3.2 mAh·cm–2 after 100 cycles with high 
CE was achieved due to dual conductive networks in the 
presence of graphene (Fig. 4(c)) [76]. Typically, the ICE of 
μ-porous-Si without a surface coating is far below that of 
graphite anodes (90%–95%) due to the high specific surface area. 
Meanwhile, low coating carbon content could increase the first 
ICE of μ-porous-Si anodes because amorphous carbon irreversibly 
reacts with lithium at a low potential. Therefore, the coating 
carbon content needs to be considered comprehensively in the 
design process. In this regard, exterior carbon coating on 
μ-porous-Si with pore size of ~2.8 nm was developed, which 
could significantly reduce specific surface area from 235.6 to 
32.4 m2·g–1 [77]. Moreover, the coating carbon content is as low 
as 5.8 wt.% because the narrow external openings of pores on 
Si microparticles were easily closed to leave the interior pores 
unfilled (Fig. 4(d)). Such a design can well-inhibit the irreversible 
capacity loss, ensuring the high ICE and the integrity of the 
μ-porous-Si electrode. Impressively, the hierarchically structured 
μ-porous-Si particles from the low-cost diatomite precursor were 
realized by one-step magnesiothermic reduction (Fig. 4(e)) [78]. 
When controlling the reduction time to obtain an optimal ratio 
between the crystalline Si and the amorphous SiO2 constituent, 
the Si/SiO2 electrode demonstrated a high ICE (~83%) and high 
capacity retention (90% after 500 cycles at 0.2 C), associated 
with a low gross cost of ~8.7 $·kg−1 in the synthesis process.  

The dealloying of Si metal alloys has been demonstrated to 
provide porous Si materials by removing the element from the 
original alloys to form the successive 3D porous meshwork 
structure with interconnected ligaments [55, 81, 82]. Recently, 
an ant-nest-like bulk porous Si anode was fabricated from 

bulk Mg2Si by thermal treatment and acid etching (Fig. 4(f)). 
Benefiting from the 3D interconnected Si nanoligaments and 
bicontinuous nanopores, a high areal capacity of 5.1 mAh·cm−2 
could be achieved at a high mass loading of 2.9 mg·cm−2 [79]. 
Unfortunately, many synthetic methods are still limited to 
high temperature and mostly involve corrosive HF with low 
yield, which are not favorable for the feasibility of the practical 
application [82, 83]. To address this issue, Wang et al. proposed 
a scalable low-cost HF-free (HCl) approach to preparing 
μ-porous-Si anodes with a high yield of 90.4% [84]. Although 
acid-etching has shown attractive potential for the μ-porous-Si 
anode, the acid solutions in the metal corrosion process still 
remain a severe environmental issue. In this regard, a green 
and facile vacuum distillation technique was explored to provide 
nanoporous Si from commercial Mg2Si alloy (Fig. 4(g)). The 
nanoporous Si is formed by the evaporation of low boiling 
point Mg without pollution. Such a strategy can also secure 
the pore sizes by adjusting the distillated temperature and 
time [80]. Subsequently, uniform μ-porous-Si @C was further 
synthesized by the vacuum distillation method linked with the 
carbon coating process simultaneously, which is facile and 
convenient for mass production. By virtue of the catalysis of 
in-situ produced metallic Mg from the Mg2Si precursor, high 
graphitization of carbon can be achieved [85]. Recently, Lv et 
al. designed a large Si cage composite with a Si skeleton and an 
ultrathin (< 5 nm) mesoporous polypyrrole (PPy) skin. Notably, 
the practical electrode with ~6.4 mAh·cm−2 loading delivered 
a high specific capacity of ~1,660 mAh·g−1 after 400 cycles, 
showing high potential in mass production of high energy 
density LIBs [86]. Table 1 summarizes the electrochemical 

 
Figure 4 Synthesis of μ-porous-Si. (a) A schematic model of the MSS particle. Reproduced with permission from Ref. [66], © Macmillan Publishers 
Limited 2014. (b) Preparation process from the SiO precursor to the Si-C composite. Reproduced with permission from Ref. [74], © WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim 2013. (c) Preparation process of G/Si–C. Reproduced with permission from Ref. [76], © WILEY-VCH Verlag GmbH & 
Co. KGaA, Weinheim 2013. (d) Fabrication of carbon-coated Si/C microparticles. Reproduced with permission from Ref. [77], © Elsevier Ltd. 2017. 
(e) Schematic illustration of diatomite SiO2, diatomite-derived Si/SiO2, lithiated Si, and SEM image of diatomite SiO2. Reproduced with permission from 
Ref. [78], © Wiley-VCH GmbH 2020. (f) Schematic showing the preparation of ant-nest-like microscale porous Si (AMPSi) and AMPSi@C. Reproduced 
with permission from Ref. [79], © An, W. L., et al. 2019. (g) Schematic of the evolution of Mg2Si alloy by the vacuum distillation method. Reproduced with 
permission from Ref. [80], © American Chemical Society 2018. 
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performances of recently reported μ-porous-Si electrodes 
for LIBs. 

In brief, as an anode with more practical application prospects 
due to the long-term cyclability, excellent rate capability, high 
mass loading, and low electrode swelling ratio, the fundamental 
challenges in designing μ-porous-Si electrodes are simultaneously 
attaining cheap, green, and high yields of production processes. 
Thus, the way to reduce acid consumption and temperature 
during production and increase the utilization of raw materials 
is a focus of future research. In addition, the rational distribution 
of pore structures and balance of the species, content, and 
uniformity of coated carbon are also noteworthy. 

3.2 Si/C composites 

SiMPs have been identified as the most promising anodes 
for cost-effective production. However, it remains a daunting 
challenge to suppress pulverization effectively and maintain 
the integrity of SiMP electrodes. Meanwhile, low intrinsic 
electronic conductivity also limits their rate performance. The 
rational design of Si/C composites has emerged as an encouraging 
strategy to overcome these drawbacks. The core of the Si/C 
composites is to construct strong mechanical support and 
protection for active SiMP, alleviating mechanical stress from 
volume expansion, providing rapid transport channels for Li+ 
and electrons, and protecting the interface between the SiMP and 
electrolyte. Various carbon-based materials, such as graphite 
[90, 91], carbon nanotubes (CNTs)/nanofibles [92], graphene 
[93], and pyrolysis carbon, were progressively developed to 
improve the electrochemical performance. For composite 
SiMP/C anodes, the preparation process should meet high yields 
and low energy consumption to further achieve large-scale 
application. Ball milling and spray drying are considered 
low-cost and effective methods for producing Si-based anodes 
[52, 94‒96]. In this regard, scalable synthesis of Si-graphite 
microspheres was achieved through a simple two-step mechanical 
strategy of bead grinding and spray drying (Fig. 5(a)). The 

few-layered graphite nanosheets play as a buffer layer to 
alleviate volume expansion and build a conductive framework 
to enhance electronic conductivity. Owing to the functional 
structure, the Si-graphite anode delivers a reversible capacity 
of 1,895 mAh·g–1 at 0.5 A·g–1 with high-capacity retention of 
99.8% over 500 cycles [97].  

Graphene, a two-dimensional and flexible carbon material 
with an ultra-large contact area, can be used to build high- 
performance hybrid electrodes with a minimized carbon content. 
In addition, graphene contributes to constructing robust 
electron/Li+ transport pathways in Si/graphene composites 
[93, 98, 99]. To stabilize the non-functional SiMP, Cui group 
encapsulates Si with a unique graphene cage structure, where 
the graphene cage acts as a mechanically strong and flexible 
buffer to confine all the broken Si pieces within. Benefiting from 
the unique structure, the as-obtained Si@Gr anode delivered 
an ultra-high ICE of 93.2% in the half cell and outstanding 
capacity retention (90% 100 cycles) in a full cell [100]. Previous 
studies reported that carbon encapsulation was hard to 
simultaneously meet the stringent mechanical requirements 
during the fabrication and cycling processes. Besides, the loosely 
porous graphene network is easily deformed and unstable under  
compression [101–103]. Zhang et al. proposed a scallop-inspired 
shell engineering strategy to confine high-volume SiMPs for the 
construction of binder-free and stable anodes (Fig. 5(b)) [104]. 
The methodology of each SiMP involves an inner overlapped 
graphene (OG) as a sealed shell and an outer 3D interconnected 
reduced graphene oxide (RGO) as an open hollow shell. The 
prepared SiMP@OG@RGO composite could resist high pressure 
of 3,400 kPa, delivering high volumetric capacity (1,697 mAh·cm−3) 
with a pressing density of 0.46 g·cm−3. For withstanding localized 
high stress generated during the fabrication process and under 
operating conditions, an imperfection-tolerant unique carbon 
capsule cellular (3C) architecture was designed [105]. Such  
a structure, consisting of carbon cages with rational voids 
interweaved in a cellular dense graphene network (Fig. 5(c)),  

Table 1 Electrochemical properties of μ-porous-Si electrodes 

Performance 
Anode Si source Loading 

(mg·cm–2) Compositiona ICE 
Retention Cycles 

Ref. 

AMPI@C Mg2Si (3–5 μm) 0.8-2.9 80:10:10 80.3% 90.0% 1,000 [79] 

NP-Si Mg2Si  1.2−1.5 60:20:20 85.0% 59.6% 100 [80] 

3D porous Si@C Si (10 μm) 3.5 75:15:10 94.4% 87.0% 50 [61] 

Si20-30 μm AlSi (30 μm) 0.6 70:15:15 82.0% 83.5% 200 [55] 

MBPS/c-PAN Photovoltaic waste Si (1.5 μm) 1.6 — 92.0% 94.0% 50 [87] 

Porous Si/C SiOMP 1.0 70:15:15 87.5% 75.0% 100 [77] 

nC-pSiMP SiO (325 mesh) 2.0 80:10:10 78.0% 102.0% 1,000 [88] 

μ-Si cage AlSi MPs 4.4 80:10:10 78.2% 86.0% 400 [86] 

P-Si/C–1 Metallurgical-grade Si (10-100 μm) 4.2 80:10:10 78.0% 84.0% 50 [68] 

3D porous Si Si-alloy composites 1.0 60:20:20 76.5% 42.0% 200 [81] 

Si/C AlSi alloy (0.5–50 mm) 0.5 60:20:20 81.5% 86.8% 300 [64] 

Porous Si Mg2Si (3–12 mm) 1.0 80:10:10 84.3% 69.0% 100 [84] 

Porous Si/C SiO (325 mesh) 1.2 60:20:20 77.0% 97.8% 200 [74] 

p-Si Waste crystalline silicon solar panels 0.5–0.9 70:10:20 84.2% 91.5% 400 [89] 

Si/SiO2  Diatomite 1.6 60:20:20 83.0% 90.0% 500 [78] 

M-pSi Si (5–10 μm) 0.5 60:20:20 85.2% 95.0% 100 [72] 
aRatio: active material:conductive agent:binder. 
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exhibits ‘imperfection-tolerance’ to volume variation of irregular 
SiMPs, achieving a record cyclability over 1,000 cycles. 
Impressively, an ultrahigh volumetric capacity of 1,048 Wh·L−1 
was achieved at the pouch full-cell level coupled with a 
LiNi0.8Co0.1M0.1O2 (NCM811) cathode.  

It is demonstrated that the electrical/mechanical properties 
of electrode materials can be boosted by CNTs, specifically for 
the shape of segregated networks [107‒110]. To overcome the 
mechanical instabilities of the thick electrodes, a segregated 
network composite of CNTs with SiMPs was formed by 
increasing the content of CNTs (Fig. 6(a)) [111]. Such a unique 
structure allowed the fabrication of high-performance SiMP 
electrodes with thicknesses of up to 300 μm and enhanced 
both conductivity and mechanical toughness. The combination 
of high thickness and specific capacity results in an ultra-high 
areal capacity of up to 45 mAh·cm−2 for the SiMP/CNTs anode 
in half cells. More practically, the full cells can achieve outstanding 
areal capacities of 29 mAh·cm−2 and specific/volumetric energies 
of 480 Wh·kg−1 and 1,600 Wh·L−1. Recently, Guo group 
constructed a flexible interface on the surface of carbon-coated 
SiOxMPs (SiOx/C) by infiltrating Li polyacrylate (Li-PAA) 
with CNTs [112]. The designed interface exhibits regulated 
stretchability and high electron/Li+ conductivity, maintaining 
the integrity of the micron-sized C-SiOx/C electrode and 
restraining the overgrowth of SEI (Fig. 6(b)). The ingenious 
design and coating process contribute to the excellent cyclability 
of the electrode. Besides, Yi et al. reported that CNTs could in situ 
grow into the Si wall and mesoscale porosity to form flexible 
conductive Si/CNT composites [113]. The unique structure 
effectively improved the electron transport within the SiMPs, 
prevented Si domains from pulverization, and enhanced the 
mechanical properties of SiMP. As a result, the Si/CNT 

composites delivered a reversible capacity of 715.5 mAh·g−1 at 
1 A·g−1 after 400 cycles. Very recently, a free-standing micro-sized 
Si-based film anode was reported, whereby the carbon layer 
and CNT networks doubly anchored the SiMPs through 
synchronous spraying (Fig. 6(c)) [114]. The networks of 
Si@CNT@C could catch the Si particles and keep continuous 
electrical contact during long-term cycling, thus reviving the 
fragmented Si and maintaining lithium storage properties. The 
networks fabricated by different types and forms of carbon 
play a significant role in the electrochemical behavior of Si-based 
electrodes [53, 115]. It has been of great interest to synthesize 
Si-based composites with CNTs and graphene [116‒118]. A 
homogeneous and conductive rigid SiMP based gel was 
successfully prepared by mixing the phytic acid capped Si  
with graphene oxide and functionalized CNT. The formed   
3D cross-linking structure enabled the resultant SiMP-based 
gel composite with a high reversible capacity of 2,711 mAh·g−1  
at 0.42 A·g−1 and long cycle life of 700 cycles with 800 mAh·g−1 
[119]. 

In situ pyrolysis of organic carbon sources is supposed to be 
an effective method to prepare Si/C electrode materials. Among 
them, the pitch is an attractive carbon matrix precursor [120, 
121], Cho group designed double passivation structured Si/C 
for high-density composite SiMPs with SiO2 coated Si and 
interlayered elastic C derived from pitch [122], such a composite 
could withstand the induced stress upon repeated cycles, 
achieving superior cyclability of 1 Ah pouch-type full-cell 
with a high areal capacity of 3.75 mAh·cm−2 and a tap density 
of 1.65 g·cm−3 for 800 cycles. In addition, citric acid [123], 
polyacrylonitrile (PAN) [124], sucrose [53], phenolic resin 
[51], etc. could be used for the Si/C composites as carbon 
precursors.  

 
Figure 5 (a) Synthesis diagram of nanostructured Si-G microspheres through a two-step mechanical strategy. Reproduced with permission from
Ref. [106], © Wiley-VCH GmbH 2022. (b) Schematic illustration for the structure of mSi@OG@RGO. Reproduced with permission from Ref. [104],
© WILEY-VCH Verlag GmbH & Co. KGaA, GmbH 2018. (c) Formation of 3C architecture in SiMP@C-GN. Reproduced with permission from Ref. [105],
© Chen, F. Q., et al. 2021. 
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In short, the rational design of SiMP/C composites with 
high electronic conductivity and mechanical strength has 
greatly improved the cyclability of SiMP electrodes. However, 
constructing a reasonable multi-scale 3D network to enhance 
mechanical stability and interface stability for SiMP with different 

morphologies still needs further investigation. Typically, most 
synthesis methods of SiMP/C composites are very complex 
and challenging to scale up (Table 2). Therefore, high yield, 
environmentally friendly, and economical synthesis methods 
are urgent. 

 
Figure 6 (a) Schematic illustration for the hierarchical Si/CNT segregated network composite electrode. Reproduced with permission from Ref. [111],
© Park, S. H. et al. under exclusive licence to Springer Nature Limited 2019. (b) Schematic illustration of the lithiation and delithiation of SiOx/C and 
C-SiOx/C. Reproduced with permission from Ref. [112], © Elsevier Ltd. 2020. (c) Structural characteristics of the Si@CNT@C film. Reproduced with 
permission from Ref. [114], © Elsevier Ltd. 2021. 

Table 2 The synthesis methods and electrochemical properties of SiMP/C composites 

Performance 
Anode Synthesis methods Loading 

(mg·cm–2) ICE 
Retention Cycles 

Ref. 

C-SiOx/C Stirring and sonication 1.4–1.5 80.7% 60% 500 [112]
Cross-linked Si/CNT Acid etching (1 M H2SO4) and heat treatment (600 °C) 1.0 60.2% 80.7% 100 [113]

PMSi/CNT/C Acid etching (2.5 M HF) and heat treatment (800 °C) 1.2–1.5 89.1% 92.6% 50 [110]
Si@CNT@C CVD, spray, and heat treatment (800 °C) 1.0 74.9% 69.2% 100 [114]
Si/rGO/CNT Acid etching (HF) and filter — 82.3% 94% 400 [117]

Si-PA/ GO/CNTs Ball-milling and self-assembly 0.5–1.5 70.1% — — [119]
Spherical SCG Ball-milling and heat treatment (1,000 °C) 5.0 84% 99.2% 100 [118]

Si@SiO2@C centrifugal mixing and heat treatment (950 °C) 1.1 85.7% 93.2% 50 [122]
SiOx/SNWs@C Heat treatment (900 °C–1,100 °C) and CVD 1.8 74.6% 92% 300 [125]
C-MH-2E-SiOx Ball-milling, heat treatment (950 °C), and acid etching (HF) 1.0–1.2 78.2% 31.6% 300 [121]

Si/C Spray-dry and carbonized at 600 °C 1.5 84% 42% 60 [123]
Si/SiO2@C Heat treatment (700 °C) and acid etching (1 M HCl) — 56.8% 70.3% 100 [126]

Porous Si/C–graphite  Acid etching (HF) and CVD — 63% 82% 450 [67] 
MSG Thermal decomposition (900 °C) 3.0 93% — — [90] 
Si-G Bead grinding and spray drying  0.76 82.4% 99.8% 500 [106]

SiMP@C-GN CVD and partial etching (NaOH) 1.0 82.6% 70% 500 [105]
Graphene-encapsulatd 

SiMP 
Electroless nickel and carburization, graphene growth at 

450 °C, and acid etching (10 M HCl) 0.8–2.5 93.2% 90% 100 [100]

mSi@GNG Hydrazine vapor reduction 3.0 85% — — [98] 
mSi@OG@RGO Freeze-dried and heat treatment (1,000 °C) 1.0–1.5 78% — — [104]
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3.3 The other Si-based composite 

In addition to compositing with carbon, Si can also be hybridized 
with metals [127, 128], metal oxides [129], organic polymers 
[130], etc., to overcome the application challenges of SiMP [131]. 
Moreover, recent studies have shown that multicomponent- 
composited SiMP exhibited improved stability [132]. Inspired 
by the nanocrystalline ‘dispersion strengthening’ mechanism 
of amorphous materials, a novel SiMP composite was developed 
by a simple and scalable method based on ball milling of 
prelithiated SiMP in a CO2 atmosphere, where polycrystalline 
Si particles embedded in amorphous SiOC matrix contain SiC 
and Li2SiO3 nanocrystals (Fig. 7(a)) [133]. The dispersion- 
strengthening effect significantly suppressed the volume expansion 
and particle pulverization. As a result, the prepared DSM-Si anode 
exhibited a high specific capacity (1,268 mAh·g−1 at 100 mA·g−1) 
and a long lifespan (957 mAh·g−1 after 400 cycles) with a tap 
density of 1.0 g·cm−3. Besides, egg-like few-layered graphene- 
wrapped and Fe3O4-pillared SiOx anodes (SiOx@Fe3O4@FLG) 
were synthesized by a highly cost-effective two-step ball-milling 
technique (Fig. 7(b)). Such a rationally designed mesoporous 
structure exhibited fast Li+ diffusion and delivered enhanced 
cycle stability (500 cycles with 82% capacity retention) [134]. 
It has proved that highly electron and ion conductive lithiated 
TiO2 (LixTiO2, 0 ≤ x ≤ 1) improves electronic conductivity  
and ion transport kinetics in the bulk electrode related to 
outstanding rate performance [135, 136]. Inspired by this, 
dual-shell coating structural composite SiOx@TiO2@C was 
prepared. The as-prepared composite exhibited ultrahigh capacity 
retention of 89.5% after 800 cycles and excellent rate performance 
of 949.7 mAh·g−1 at 10 A·g−1 due to the lithiated TiO2 with 
highly ion/electron conductivity [137]. Furthermore, it was 
also demonstrated that Li4Ti5O12 (LTO) could enhance the rate 
performance in an extreme environment. Interestingly, the 
Si@LTO@C composite displayed a superior reversible capacity 
of 848 mAh·g−1 at an ultra-high current density of 15 A·g−1 
after 1,000 cycles at 80 °C [138]. Another type of effective coating 
material is the functional polymer [130]. Lee group combined 
mechanically resilient coatings of cyclized-polyacrylonitrile 

(cPAN) with a room-temperature ionic liquid (RTIL) electrolyte 
to enhance the interface of SiMP and maintain the integrity of 
electrodes (Fig. 7(c)) [139]. More impressively, incorporating 
a combustion-reacted nanoporous ZnO matrix into a SiMP 
electrode (np-ZnO/SiMP) could significantly alleviate volume 
expansion of Si and stabilize the electrochemical performance 
(Fig. 7(d)) [140]. The Li2O/Zn matrix derived from the conversion 
reaction of np-ZnO acted as an effective buffer to lithiation- 
induced stresses from volume expansion and served as a 
binder-like matrix. The np-ZnO/SiMP electrode could achieve 
a high areal capacity of 1.7 mAh·cm−2 beyond 200 cycles with 
a mass loading of 1.5 mg·cm−2. 

4 Binder design for micro-Si anodes 
Extensive research has been devoted to developing suitable 
binders for Si-based anodes. 

Although these binders promote the cycling stability of SiNP 
anodes, achieving long-term durability remains challenging 
for SiMP anodes because SiMPs are more susceptible to 
pulverization during volume expansion than their nano-sized 
particles. Therefore, it is urgent to design binders with 
satisfactory adhesion and mechanical properties to maintain 
the integrity of SiMP electrodes. 

Severe expansion and cracking phenomenon of SiMP 
anodes easily lead to the disconnection of the bonding system 
during Li-cycling processes. Recently, it is demonstrated that 
the polymer binder with self-healing ability and excellent 
mechanical properties can restore the losing connection of 
binder for SiMP systems. Based on the remarkable self-healing 
and elastomeric properties, Bao and co-workers developed 
self-healing binders for SiMP anodes with self-healing polymer 
(SHP). The fabricated SiMP/SHP/CB electrode retained 80% 
of the initial capacity at 0.4 A·g–1 after 90 cycles, which is much 
higher than that of SiMP electrodes with traditional binders 
because cracks and damage in the coating during cycling 
could be healed spontaneously by the randomly branched 
hydrogen-bonding polymer [141]. To achieve high capacity, 
long-term cyclability, and rate capability, the same group 

 
Figure 7 (a) Schematic illustration of the DSM-Si fabrication procedure. Reproduced with permission from Ref. [133], © Elsevier B.V. 2018. (b) Schematic
diagram of the two-step ball-milling method for FLG (few-layered graphene)-wrapped and Fe3O4-pillared SiOx composites. Reproduced with permission 
from Ref. [134], © Elsevier B.V. 2018. (c) Self-contained fragmentation mechanism in which cPAN coatings mechanically confine the fractured μSi
particles. Reproduced with permission from Ref. [139], © IOP Publishing 2018. (d) Binder-less, additive-less np-ZnO/SiMP electrode structure and the 
two-step lithiation mechanism involving the conversion reaction of the np-ZnO and alloying reaction SiMPs that enable extended stable electrochemical
cycling. Reproduced with permission from Ref. [140], © American Chemical Society 2018. 
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introduced polyethylene glycol (PEG) groups into the SHP, 
facilitating Li+ conductivity within the binder (Fig. 8(a)) [142]. 
A high discharging capacity of 2,600 mAh·g−1 with capacity 
retention of 80% over 150 cycles at 0.5 C was achieved in the 
presence of SHP and PEG with Mw 750 in an optimal ratio of 
60:40 (mol%). Taking into account the low cost and high safety 
of the water solvent, Xu et al. designed a water-soluble and 
rigid-soft modulated polymer binder, poly (acrylic acid)-poly 
(2-hydroxyethyl acrylate-co-dopamine methacrylate) (PAA-P 
(HEA-co-DMA), which in situ forms a self-healing 3D network 
flexible structure during the electrode preparation (Fig. 8(b)) 
[143]. The dual crosslinked network significantly promoted 
the mechanical strength of the binder, while the soft chains 
provided good flexibility. The SiMP electrode fabricated with 
10 wt.% PAA–P(HEA-co-DMA) binder delivered a high areal 
capacity of 3.2 mAh·cm−2 and capacity retention of 93.8% after 
220 cycles at 1 A·g−1, with good rate capability (1,855 mAh·g−1 
at 5 A·g−1). It is expected that those anode systems hold great 
promise for practical applications. 

Linear poly (acrylic acid) PAA with plentiful carboxyl 
functional groups that can establish interaction with the Si 
oxide layer has been extensively investigated in SiNP electrodes. 
Numerous studies confirm that adjusting softness to improve 
elasticity, or expanding the network structure of PAA by 
combining with monomers or polymers, enabled noticeable 
improvement of application prospects of functional PAA and 
its derivatives in Si-based systems [144]. Impressively, these 
strategies have been applied in SiMP anodes with positive 
results. Choi group designed a novel binder favorable for SiMP 
anodes by incorporating the sliding-ring polyrotaxane (PR) 
with PAA. PR altered the mechanical properties of the PAA 
binder and led to a highly elastic binder network engaging the 
sliding motion of PR (Fig. 9(a)). Benefiting from the mechanical 
bond in the form of a PR, the stress generated in the binder 
during cycling could be uniformly distributed across the 
networks. Therefore, the PR–PAA binder could accommodate 
larger stresses without breakage and keeps pulverized particles 
together without disintegration. Consequently, the fabricated 
PR-PAA–SiMP electrode (SiMPs, binder, and super P in a 
weight ratio of 8:1:1) with mass loading of 1.07 mg·cm−2 exhibited 
a high areal capacity of 2.67 mAh·cm−2 and attractive capacity 

retention of 91% after 150 cycles at 0.64 mA·cm−2 [145]. 
Constructing structure-stable SiMP electrodes by linking 
functional surface coating layer of Si particles and PAA 
molecular is another effective strategy. A novel method was 
proposed to synthesize a metal-chelated biomimetic polyelectrolyte 
coating of Fe3+ doped PDA layer on the SiMP surface (Fig. 9(b)) 
[146]. The subsequent hydrothermal treatment at 160 °C not 
only generated a Fe–N bond to improve the mechanical 
strength of the PDA layer, but also formed a 3D crosslinking 
structure between the PDA layer and PAA to further guarantee 
the structural stability of anodes (Si@Fe3+–PDA–160/PAA 
anode). The as-designed electrodes displayed excellent cycling 
stability with a high capacity retention of 80% after 100 cycles 
at 0.1 C and stable capacity of 2,000 mAh·g−1 after 200 cycles 
at 0.5 C. In addition, tannic acid (TA) was also used to modify 
the SiMP and then interact with PAA binder [147]. Under the 
combined effect of TA and PAA, the formed 3D cross-linked 
network of binder could improve the cycle and rate performances 
of low-cost SiMP-based LIB anodes. 

Several strategies for improving the mechanical strength of 
the electrodes and building an extended conductive network 
have been developed to maintain the conductive network of 
the Si-based anode. Notably, the conducting binder can 
perform both electrical connection and binding functions 
[148]. Nevertheless, the applications of conductive binders are 
generally hindered by the lack of mechanical strength. To address 
this issue, Pan and co-workers designed a polyfluorene-type 
cross-linked conductive binder (CCB) with a robust hierarchical 
conducting network by connecting linear conductive binders 
(LCBs) onto conjugated anchor points based on covalent bonds. 
The synthesized CCB has significant intrinsic conductivity to 
act as a secondary conductive network and exhibits excellent 
mechanical properties to maintain the network [149]. Such a 
robust hierarchical conducting network endows the SiOx/CCB 
electrodes with a high capacity retention of 88.1% after 250 cycles 
at 0.8 A·g−1. Very recently, the same group constructed a 
water-soluble polyfluorene-type conductive terpolymer (PFPQDA) 
binder, which consists 10 mol% of dopamine-functionalized 
fluorene structure units (DA) and 10 mol% of phenanthraquinone 
PQ groups in the backbone of polyfluorene-typed (PF) 
conductivity binder (Fig. 10(a)) [150]. The designed triblock 

 
Figure 8 (a) Schematic chemical structure of the SHP-PEG binder and schematic illustration of the Si microparticle electrode with SHP-PEG binder. 
Left: Self-healing based on dynamic hydrogen bonding close to a crack caused after cycling. Right: Li-ion conduction facilitated by PEG groups. 
Reproduced with permission from Ref. [142], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018. (b) Structural formulae of copolymers and 
their interaction with Si, chemical structures and illustrative interaction of P(HEA-co-DMA) and PAA. Reproduced with permission from Ref. [143], 
© Elsevier Inc. 2018. 
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copolymer PFPQDA exhibits enhanced conductivity inherited 
from PFPQ-COONa (PFPQ) and superior mechanical properties 
due to the decoration of catechol groups. Consequently, the micro- 
sized SiOx anodes with PFPQDA exhibited improved cycling 
performance (capacity retention of 96% after 150 cycles at 0.1 C) 
and rate capability with an areal capacity over 2.5 mAh·cm–2, 
which is attributed to the suppressed volume expansion 
and stable conductive pathways of electrodes. Besides, it is 
demonstrated that the n-type conductive polymer binders 
(CPBs) serve as unique binders for fast-charging SiMP anodes. 
By introducing a proper amount of 4,4-diphenyl ether and 
lithium sulfonate groups, aromatic polyoxadiazoles (PODs) can 
be dissolved in many aprotic polar organic solvents and obtain 
excellent processability (Fig. 10(b)) [151]. The prepared b-POD 
CPBs in the eigenstate and n-doping state contained electron- 
withdrawing oxadiazole ring groups and easily ionizable sulfonate 
polar groups, enabling excellent ionic conductivity, outstanding 
wettability to the electrolyte, improved electronic conductivity, 

and exceptional strength and ductility. Hence, the b-POD 
endowed SiMP anodes with better cycling performance than 
non-conductive binders, especially at high current densities. 

For improving the mechanical properties of the binder, 
ensuring the conductive network of electrodes, and enhancing 
the binding interaction with Cu current collectors, a series of 
binders with crosslinked networks using various metal cations, 
supramolecular, and functional polymers or monomers were 
also developed to overcome the challenges of SiMP electrodes 
[152–158]. 

In summary, binders, an indispensable electrode component, 
play a crucial role in stabilizing Si-based anodes with high 
volume changes. However, SiMP anodes suffering from more 
severe fractures during cycling, are compulsory to meet higher 
requirements on the mechanical properties, interface compatibility, 
and functionality of the binder. The binder design strategies 
mentioned in this section have significantly enhanced the 
cycling stability of SiMP anodes (Table 3). Nevertheless, there 

 
Figure 9 (a) Proposed stress dissipation mechanism of PR-PAA binder for SiMP anodes. Reproduced with permission from Ref. [145], © American Association
for the Advancement of Science 2022. (b) Graphical illustrations of the synthesis process of Si@Fe3+–PDA/PAA anode and suppression of Fe3+–PDA/PAA
binder on volume expansion of SiMP. Reproduced with permission from Ref. [146], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2020. 

 
Figure 10 (a) Molecular structure of PFPQDA and the illustration of functionalities of each moiety in the monomeric unit Scheme of multiple networks
constructed within Si/PFPQDA electrodes. Reproduced with permission from Ref. [150], © Wiley-VCH GmbH 2022. (b) n-Type CPB that maintains the 
electrical and mechanical integrity of the SiMP anode during charge and discharge cycles and the chemical structure of aromatic polyoxadiazole lithium
sulfonate. Reproduced with permission from Ref. [151], © The Royal Society of Chemistry 2021. 
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are still several challenges in making these binders commercially 
available, such as complex synthesis processes, expensive raw 
materials, environmentally unfriendly solvents, low mass loading 
of active materials, and high proportion of binders. Therefore, 
more efforts are needed to develop effective binders adapted 
to the practical applications of SiMP anodes. 

5 Design of electrolytes 
One of the critical challenges that Si-based materials face is the 
continual formation of unstable SEI layer, which deteriorates 
in SiMP anodes due to more severe volume expansion than 
nano-sized Si particles [159, 160]. Apart from the favorable 
design and fabrication of Si-based active components and binders, 
constructing a robust SEI by rational electrolyte design is 
considered one of the most promising approaches to boost the 
electrochemical reversibility of Si-based anodes. 

Significant progress has been made via functional additives, 
highly concentrated electrolytes, Li salt, and solvent optimization 
to further improve the properties of SEI [161–166]. However, 
the lack of an SEI design principle for alloying anodes inhibits 
success. The present electrolytes form an organic–inorganic 
SEI that is strongly bonded to the alloy surface, which makes 
the SEI suffer from the same high deformation as the alloy. In 
this regard, Wang’s group demonstrated that a rationally designed 
electrolyte (2.0 M LiPF6 in 1:1 (v/v) mixture of tetrahydrofuran 
and 2-methyltetrahydrofuran) facilitates the formation of 
thin and uniform lithium fluoride (LiF)-based SEIs with a low 
adhesion (high interfacial energy) to lithiated alloy surfaces 
[167]. The selective formation of a high-modulus LiF−organic 
bilayer SEI on the surface of the SiMP electrode enables SiMP to 
relocate at the interface to accommodate the volume change and 
maintain particle integrity (Fig. 11(a)). Consequently, SiMP 
anodes with areal capacities of more than 2.5 mAh·cm−2 delivered 
high ICE of > 90% and average CE of > 99.9% over 300 cycles. 

From a practical perspective, high safety under elevated 
temperatures is necessary for secondary batteries owing to the 

diversified scenarios and working conditions [168‒170]. However,  
the flammability and volatility of conventional organic 
electrolytes significantly limit battery operation at high 
temperatures and cause safety risks. A fire-resistant, well- 
performing electrolyte and a robust SEI layer derived from the 
electrolyte are essential to guarantee the safety of Si-based 
anodes at elevated temperatures [171, 172]. To this end, ionic 
liquids (ILs) have received intensive attention as alternative 
solvents to organic carbonates for their remarkable safety 
features (high thermal stability, nonflammability, and wide 
electrochemical potential window). Kerr et al. reported that 
micro-sized Si/graphene anode could deliver outstanding 
capacity retention of around 3.5 mAh·cm–2 after 300 cycles at 
C/2.5 in an IL electrolyte (trimethylisobutylphosphonium 
bis(fluorosulfonyl)imide [P1,1,1,i4][FSI] containing a high 
LiFSI salt content) (Fig. 11(b)) [173]. Moreover, high capacity 
retention was maintained for 60 cycles at high temperatures 
up to 80 °C when conventional electrolytes could not operate. 
The obtained results demonstrated that the highly concentrated 
IL electrolyte could promote the formation of stable SEI that 
can accommodate the volume expansion of Si-based anodes. 

Elevated temperature generally brings irreversible side 
reactions and an increased risk of thermal runaway during the 
operation of a working battery. In general, the decomposition 
of the commonly used LiPF6/carbonate electrolyte takes place 
above 55 °C [174], and the SEI starts to disintegrate above 65 °C 
[175], causing rapid degradation. According to the thermal 
runaway process of LIBs, the decomposition of SEI is the first 
step during the occurrence of thermal runaway. When the SiMP 
anode is employed, the huge volume changes bring more 
severe challenges of safety at high temperatures. Very recently, 
Hu’s group demonstrated the thermochemical behavior and 
thermal safety of SEIs on SiMP anodes for high-energy LIBs 
[176]. The employment of a moderate-concentration IL-based 
electrolyte, which is compatible with SiMP anodes, is favorable 
for the formation of robust SEIs with thermally stable, high- 
modulus, and inorganic-rich features (Fig. 11(c)). Therefore, 

Table 3 Binders for SiMP anodes 

Performance 
Binder Active materials 

Loading 
(mg·cm–2) 

Compositiona ICE 
Retention Cycles 

Ref. 

SHP Si (0.9 μm) 0.7–1.1 70:4:26 — 80.0% 175 [155] 
PANa0.8Fey Si (1–5 μm) 0.8–1.0 80:10:10 92.3% 64.0% 100 [152] 
PFPQDA SiOx (6.5 μm) 0.8 80:10:10 72.3% 80.0% 200 [150] 

PAL−NaPAA Si (1 μm) 0.7–0.8 60:20:20 91.0% — — [156] 
CCB SiOx MP 1.9–2.1 80:10:10 — 88.0% 250 [149] 

b-Li0.5PAA@SA Si (1–5 μm) 1.1 60:20:20 86.0% 57.3% 150 [153] 
SHPs Si (3–8 μm) 0.5–0.7 47:6:47 80.0% 80.0% 90 [141] 

PR-PAA Si (1–5 μm) 1.1 80:10:10 91.2% 91.0% 150 [145] 
Fe3+–PDA/PAA Si (1–5 μm) 3.0 60:20:20 — 80.0% 100 [146] 

PU-PDA Si (2–3 μm) 0.3–0.8 60:20:20 71.3% 77.3% 100 [157] 
b-POD Si (0.55 μm) 0.4–0.6 60:20:20 89.0% — — [151] 

Li-SPOD Si (0.5 μm) — 60:20:20 — 53.4% 100 [148] 
PAA-P (HEA-co-DMA) Si (0.5–1 μm) 0.8–1.0 80:10:10 89.4% 94.0% 220 [143] 

TA-PAA SiMP 0.5 80:10:10 90.0% 61.0% 100 [147] 
CMC-co-SN Si (3 μm) 1.0–1.2 70:15:15 91.5% — — [158] 

SHP-PEG Si (0.8 μm) 0.5–0.7 65:5:30 83.0% 80.0% 150 [142] 
aRatio: active material:conductive agent:binder. 
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the thermal runaway would be inhibited by alleviating the 
decomposition of SEI at high temperatures. 

Gel polymer electrolytes (GPE) have been used to improve 
the safety and stability of batteries [177, 178]. For instance, a 
supremely elastic GPE was reported to intrinsically alleviating 
the displacement of material particles and electrode cracking 
of micro-sized SiO anodes at high loading conditions     
(Fig. 12(a)) [179]. Attributed to the presence of a soft ether 
domain and a hard cyclic ring domain, the unique copolymer 
(poly(poly(tetramethylene-ether) glycol-co-4,4’-methylene 
diphenyl diisocyanate)-ethylene diamine)) exhibits excellent 
elasticity, suppressing severe electrode cracking and the 
peeling-off of SiO particles from the current collector. As a 
result, a high capacity retention of 70.0% in 350 cycles with a 
reversible capacity of 3.0 mAh·cm−2 and an average CE of 99.9% 
was achieved when the obtained SiO anode was matched with 
a LiNi0.5Co0.2Mn0.3O2 cathode. Furthermore, Cho et al. also 
reported a GPE for the high-loading Si electrode (equivalent 
to 3.3 mAh·cm–2) with a higher amount of active Si (80%) 
[180]. The designed GPE provided additional cohesion between 
the Si particles and retained electrode integrity even after 
pulverization (Fig. 12(b)). The development of Si anodes for 
LIBs has been greatly hindered by low interfacial stability 
against liquid electrolytes. In addition, the amount of inactive 
components (binders and conductive agents) in the electrodes 

lowers the energy density of the cells. To address these issues, 
Meng’s group fabricated a battery system with the 99.9 wt.% 
SiMP anode and sulfide solid electrolytes, enabling the stable 
operation of the anodes due to the interface passivating 
properties of sulfide solid electrolytes (Fig. 12(c)) [181]. Bulk 
and surface characterization demonstrated that this strategy 
eliminates continuous interfacial growth and irreversible 
lithium losses. Consequently, SiMP-based full cells could achieve 
high areal current density, wide an operating temperature 
range between −20 and 80 °C, and high areal loading of    
12 mAh·cm−2. 

In brief, maintaining interfacial SEI and electrode structural 
stability is key to achieving high-performance SiMP anodes. 
The SEI is predominately determined by the composition of 
electrolytes (e.g., salt, solvent, and additive) and the chemistry 
of the electrode surface. Regulating SEI composition and 
nanostructure by electrolyte design is a straightforward 
methodology to achieve different properties of interface such 
as compositional uniformity, enhanced mechanical stiffness, 
and thermal/chemical stability. In addition, the SEI formation 
and interfacial evolutions process, as well as the effect of 
electrolytes on the evolution of electrode structure, should be 
further understood via operando modes to provide visualized 
information for the development of functional electrolytes for 
SiMP electrodes. 

 
Figure 11 (a) Schematic diagram for the cycled alloy anode with an organic, low Eint non-uniform and an inorganic, high Eint and uniform Li alloy–SEI 
interface. Reproduced with permission from Ref. [167], © Chen, J. et al. under exclusive licence to Springer Nature Limited 2020. (b) Comparison of the 
cycling performance and cross-sectional SEM image of the Si/graphite electrode with and without an ionic liquid electrolyte. Reproduced with permission
from Ref. [173], © American Chemical Society 2017. (c) Mechanisms for SEI affecting the battery safety in the E-control electrolyte and IL-based 
electrolyte at high temperatures. Reproduced with permission from Ref. [176], © Wiley-VCH GmbH 2022. 
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6 SiMP-based full cell 
Achieving high cyclability of Si-based full cells is even more 
challenging for Si anode researchers since the capacity fading 
of Si anodes is more severe in full cells than in half cells. The 
loss of reversible capacity is not distinct in the half cell, where 
the Li source is infinitely supplied from the Li metal. In contrast, 
the consumption of active Li arising from parasitic reactions 
may result in unavoidable capacity drops in Li-confined full 
cells [182]. Therefore, investigating the performance in full 
cells can verify the practical prospect of SiMP-based materials.  
Table 4 summarizes the performance of SiMP-based full cells. 

To satisfy the ever-increasing demands for high energy density, 
LiFePO4 (LFP) is not a preferential cathode material, despite 
its stable structure and high safety. The ternary Ni-rich cathode 
materials and LiCoO2 (LCO) can provide high working voltage 
and capacity, which have received increasing attention [44]. 

Pre-lithiation and compatibility are pivotal for SiMP-based 
full cells with improved energy densities and lifetime [40]. 
Balancing the structure optimization of SiMP anodes, the 
design of high-capacity cathodes, the choice of electrolytes, 
binders, and separators, pre-lithiation technologies, as well as 
cost reduction remains the urgent challenge of SiMP-based 
full cells that need to be overcome. 

 
Figure 12 (a) Schematic illustration of an elastic gel polymer electrolyte (GPE)-incorporated SiO anode with a reliable electrode structure. Reproduced with
permission from Ref. [179], © Huang, Q. Q. et al. 2019. (b) Morphological changes of silicon electrodes in liquid versus gel electrolytes during lithiation 
and delithiation. Reproduced with permission from Ref. [180], © The Royal Society of Chemistry 2016. (c) Schematic illustration for the 99.9 wt.% SiMP
electrode in an all-solid-state full cell. Reproduced with permission from Ref. [181], © American Association for the Advancement of Science 2022. 

Table 4 Summary of performance for SiMP-based full cells 

Performance 
Anode materials Cathode materials Full-cell type N/P Energy density 

(Wh·kg−1/ Wh·L−1) Retention Cycles 
Ref. 

AMPSi@C NCM Coin cell 1.10 502/— 84.0% 400 [79] 
P-Si/C@C NCA 18 650-type cylindrical cell — 256 84.1% 1200 [56] 

Si@C@Al2O3 LFP Coin cell — — 70.0% 70 [183] 
Si/rGO/CNT NCM Coin cell 1.10 — 77.7% 50 [117] 
μSi-cPAN LMR Coin cell — 712 85.7% 300 [139] 

SiO NCM523 Coin cell 1.18 — 70.0% 350 [179] 
SiMP/GO LCO Coin cell 1.00 —/801 — — [184] 

Si@SiO2@C LCO Pouch cell 1.10 — — — [112] 
Porous Si/C NCM Coin cell 1.1 — 83% 300 [67] 
SiMP@Gr LCO Coin cell 1.13 — 90% 100 [100] 

Si-G NCM523 Pouch cell 1.10 — 79.3% 800 [106] 
SiOx LFP Pouch cell 1.30 — — — [150] 

PR-PAA-SiMP NCA Coin cell 1.15 — 98% 50 [145] 
μSi NCM811 Pouch cell 1.10 — 80% 500 [181] 

SiMP NCM Coin cell 1.10 — 80.8% 120 [143] 
Si/CNT LCO Coin cell 1.2 — 76% 50 [113] 

p-Si NCM622 Coin cell — 442/— 75.5% 100 [89] 
mSi@OG@RGO LCO Coin cell 1.10 — — — [104] 
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7 Conclusion and perspective 
Si is regarded as one of the most promising anode candidates 
for next-generation LIBs. Solving the challenges caused 
by severe volume expansion of Si-based electrodes is the 
prerequisite for commercial application in LIBs. To this end, 
extensive work has been devoted to promoting the Si-based 
anode technology. Despite the significant improvement, the 
large-scale commercialization of Si-based anodes remained 
a challenge. Firstly, nanotechnology, which enables electrode 
structural stability and long-term cycling, fails to meet the 
requirements of industrial applications because of its low tap 
density, significant side reaction, low volumetric capacity, and 
complex production process with low yields. Secondly, despite 
the design of microscale Si-based anodes has remarkably 
improved the overall performance of the electrode, many 
production processes still involve elaborate fabrication steps  
at the cost of energy consumption, environmental pollution, 
and low yields. Moreover, many microscale Si materials still 
use nanoparticles as raw materials, which are not favorable  
for large-scale production. Hence, realizing the application of 
low-cost manufacturing Si-based materials (SiMP, SiOxMP, 
Si-metal alloy, and recycling industrial wastes) in LIBs by a 
simple and eco-friendly path is meaningful.  

From this perspective, we summarize the challenges, current 
strategies of structure design, binder and electrolyte engineering 
for bulk Si-based anodes. Finally, an outlook on the prospects 
of future commercialization of Si-based anodes is listed. 
Maintaining the electrode structure integrity to ensure stable 
cycling performance is of paramount importance when using 
the above low-grade Si-based materials as the Si sources. In 
this regard, scalable synthesis of porous SiMP and hybrid 
composites has been studied extensively. However, the failure 
mechanism analysis of designed micro-sized Si is still lacking 
from multi-scale and multi-physical fields. It is necessary to 
develop in-situ analysis techniques to clarify the relationship 
between design strategy and electrode performance, such as 
the effect of pore distribution on stress dispersion and the 
evolution of active particle structures, and the effect of composite 
carbon on electrode surface chemistry and electric field 
distribution. In addition, more attention should be paid to 
increasing the areal mass loading of active materials. Furthermore, 
developing simple, green, efficient, controllable, and energy- 
saving synthesis technology is pivotal to meeting industrial 
production requirements. 

Binder, as an inactive component of electrodes, plays a crucial 
role in keeping structural integrity. In terms of improving  
the mechanical strength of the electrodes and building an 
extended conductive network, developing a multifunctional 
polymer binder with self-healing and conducting properties is 
a promising direction. Moreover, naturally derived polymers 
have found better success in this role due to their high structural 
advantages. Therefore, the designed synthesis of multifunctional 
binders through biomass polymers is well worth studying. As 
to electrolytes, more attention should be paid to interface 
regulation by rationally designing the solvent structure.  

In the future LIB market, high-energy SiMP-based full cells 
with long-term performance, high safety, and low cost, have 
application prospects and needs. More effort should be devoted 
to addressing the design and compatibility of SiMPs anodes, 
cathodes, binders, electrolytes, and pre-lithiation technologies. 
In addition, improving the safe operating temperature of 

SiMP-based full cells cannot be ignored to cope with heat 
generation during continuous discharge/charge cycles. 
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