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1.  Introduction

Food-derived bioactive peptides play vital physiological roles in 
human health and disease prevention for their safety, high activity, 
good absorption, and strong targeting ability[1,2].  Especially, the 
application of    angiotensin-converting enzyme (ACE) inhibitory 
peptides as  dietary and nutritional supplements to prevent and 
improve hypertension  have recently attracted great attention due to 
the rising prevalence and mortality of hypertension[3].
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ACE inhibitory peptides with in vivo anti-hypertensive effect have 
been identified from multiple food sources by using spontaneously 
hypertensive rats (SHRs), including peptides QIGLF, TNGIIR from 
egg white[4,5], peptide LRW from pea[6], peptide WGAP from rabbit 
meat[7], and peptide LVLPGE from broccoli[8].  However, the in vivo 
anti-hypertensive mechanism of most ACE inhibitory peptides has 
not been fully clarified,  thereby greatly limiting their development 
and application[9,10]. Therefore, it is necessary to further investigate 
thoroughly and provide a more comprehensive understanding of the 
in vivo anti-hypertensive mechanism of ACE inhibitory peptides for 
better preventing and improving hypertension.

Small molecule metabolites as the final products of gene 
expression are the basis for biological phenotypes, and metabolic 
dysfunction is a fundamental core mechanism of hypertension[11]. 
Therefore,  metabolomics appears to be a promising and effective 
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approach to reveal the underlying anti-hypertensive mechanism 
of ACE inhibitory peptides, which can detect the changes of a 
great number of metabolites, especially those metabolites that 
cannot be detected by traditional technologies and can achieve the 
qualification and quantification of the metabolites simultaneously[12].  
However, very limited research has been reported on the application 
of metabolomics in investigating the mechanism of ACE inhibitory 
peptides. The untargeted serum metabolomics analysis carried 
out by Yu et al. demonstrated that a total of 8 potential serum 
biomarkers were identified in SHRs after intervention with peptide 
QIGLF and peptide QIGLF might lower blood pressure by improving 
endothelial dysfunction[13]. Manoharan et al. found that the levels of 
serum metabolites associated with the renin-angiotensin system were 
significantly changed in SHRs after administration with peptide GVR[14].  
It should be noted that the kidney is a key target organ for blood 
pressure regulation, hypertension, and anti-hypertensive treatment, 
which can provide highly selective metabolite information[15,16]. 
Additionally, ACE inhibitory peptide can regulate kidney metabolic 
disorder to exert anti-hypertensive effects[4,17].

Our previously published study has found that ACE inhibitory 
peptide Asn-Cys-Trp (NCW, IC50 value = 35.5 μmol/L) derived 
from myosin of Mizuhopecten yessoensis has a significant anti-
hypertensive effect in SHRs after three weeks of oral administration[18],  
which could significantly reduce systolic and diastolic blood pressure 
of SHRs by (48.08 ± 3.84) mmHg and (48.92 ± 5.77) mmHg,  
respectively. However, the in vivo anti-hypertensive mechanism of 
peptide NCW has not been fully clarified, and how peptide NCW 
lowered blood pressure by improving kidney metabolic disorder also 
needs an in-depth investigation. Therefore, the primary objectives 
of this present study were to explore the influence of peptide NCW 
on kidney metabolic profiles of SHRs, to identify the potential 
kidney biomarkers and corresponding metabolic pathways associated 
with the anti-hypertensive effect, and to clarify the underlying  
anti-hypertensive mechanism of peptide NCW by using a widely 
targeted kidney metabolomics approach (a new technology that 
integrates the advantages of untargeted and targeted metabolomics) 
combined with multivariate statistical analysis and bioinformatics 
analysis. The findings of this study will provide a novel insight into 
the development and application of ACE inhibitory peptides as dietary 
and nutritional supplements in the prevention and improvement of 
hypertension.

2.  Materials and methods

2.1 Materials and reagents

Methanol and acetonitrile (UPLC grade) were provided by 
Merck (Darmstadt, Hesse, Germany). Formic acid (UPLC grade) was 
obtained from Aladdin (Shanghai, China). Standards of metabolites 
were provided by Sigma-Aldrich (Saint Louis, MO, USA) and 
BioBioPha Co., Ltd (Kunming, Yunnan, China). The peptide NCW 
was synthesized by Nanjing YuanPeptide Biotechnology Co., 
Ltd (Nanjing, Jiangsu, China) and was dissolved in 0.9% saline 
obtained from Shangdong Kelun Pharmaceutical Co., Ltd (Binzhou, 
Shangdong, China) before being administered to SHRs. Rodent feed 
(Catalog number: LAD 1000 M) for SHRs was supplied by Trophic 
Animal Feed High-Technology Co., Ltd (Nantong, Jiangsu, China).

2.2 In vivo animal experiments

Twelve SPF-grade male SHRs (SCXK 2016-0006, tail SBP >  
180 mmHg, 10 weeks, approximately 255 g) were provided by Beijing 
Vital River Laboratory Animal Technology Co., Ltd (Beijing, China). 
All SHRs were kept at standard conditions with a 12 h light / dark  
cycle, (22 ± 3) °C, (60 ± 5)% relative humidity, and were fed with 
feed and water ad libitum. After a week of adaption, the SHRs were 
divided into two groups at random (n = 6 in each group): SHR-NCW 
group (peptide NCW at 80 mg/kg body weight) and SHR-Untreated 
group (saline alone). All SHRs were carefully administered with the 
corresponding sample solution (5 mL/kg) at 8: 00 am for consecutive 
21 days. After the last administration, the SHRs were fasted but 
fed with water for 24 h, and then were euthanized with ether. After 
confirming that the SHRs were euthanized, the abdominal cavities 
of the SHRs were opened along the midline of the lower abdomen. 
The kidney tissues were immediately separated on ice from SHRs 
within 5 min, frozen with liquid nitrogen, and stored at −80 °C until 
further analysis. All effort was taken to minimize the pain of SHRs. 
All animal experimental procedures were recognized by the Animal 
Research Ethics Committee of Jilin University (Approval Number: 
201702003) and were strictly performed following the regulations set 
by the care and use of laboratory animals.

2.3 Extraction of kidney metabolites and preparation of 
quality control samples

 Frozen kidney tissues were thawed on ice. Each kidney tissue was 
taken for 50 mg, and then homogenized 4 times (30 Hz, 0.5 min each 
time) using a MM400 high-speed vibrating ball mill (Retsch GmbH, 
Hanna, Germany). One mL cold methanol (70%) containing internal 
standard was added to the homogenized kidney tissue. Subsequently, 
the mixture was vigorously whirled for 5 min, placed on ice for  
15 min, and centrifuged for 10 min (16 000 × g, 4 °C). The collected 
supernatant was placed at -20 °C for 12 h, and then centrifuged for  
3 min (16 000 × g, 4 °C), so as to obtain high-purity kidney 
metabolites and prevent blocking the chromatographic column in the 
subsequent experiment. Finally, the supernatant (400 μL) was taken 
for ultrahigh pressure liquid chromatography triple-quadrupole linear 
ion-trap tandem mass spectrometry (UPLC-Q-TRAP-MS/MS).

Moreover, each kidney sample of the same volume (10 μL) from 
the SHR-NCW and SHR-Untreated groups was mixed and prepared 
as a quality control (QC) sample. Before kidney sample analysis, 
three QC samples were run to stabilize the instrument, and then a QC 
sample was run once after every 10 kidney samples during the whole 
run to monitor the stability and repeatability of the instrument.

2.4 UPLC-Q-TRAP-MS/MS analysis

Kidney metabolites were separated by a ExionLCTM AD UPLC 
system (AB SCIEX, Framingham, MA, USA). Two μL kidney 
sample was injected a Waters ACQUITY UPLC HSS T3 C18 column 
(1.8 μm, 2.1 mm × 100 mm) at a column temperature of 40 °C. 
The solvent system consisted of water containing 0.1% formic acid 
(mobile phase A) and acetonitrile containing 0.1% formic acid (mobile 
phase B). The detailed gradient elution parameters were presented 
in Table S1. The separated metabolites were alternatively connected 
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to a Triple QuadTM 6500+ Mass Spectrometer equipped with an 
electrospray ionization (ESI) source (AB SCIEX). The specific ESI 
source operation conditions were as follows: ion spray voltage,  
5 500 V (positive) / −4 500 V (negative); ESI source temperature, 
500 °C; ion source gas I, 55 psi; ion source gas II, 60 psi; curtain 
gas, 25 psi; collision-activated dissociation, high. Moreover, 10 and  
100 μmol/L polypropylene glycol were used for instrument tuning and 
mass calibration in triple quadruple (QQQ) and linear ion trap (LIT) 
modes, respectively.

2.5 Qualitative and quantitative analysis of kidney metabolites

Qualitative analysis of kidney metabolites was achieved by 

searching the internal database MWDB (Metware Biotechnology 

Co., Ltd. Wuhan, Hubei, China) and public databases (e.g., HMDB, 

MassBank, and METLIN) based on primary and secondary mass 

spectrometry data. Quantitative analysis of kidney metabolites was 

carried out by the multiple reaction monitoring (MRM) mode of the 

mass spectrometer. The mass spectrum peak of the same metabolite 

from different samples was integrated and corrected by MultiQuant 

software (version 3.0.3). The area of each mass spectrum peak 

represented the relative content of the corresponding metabolite.

2.6 Data processing and statistical analysis

MS data acquisition and analysis were performed using Analyst 

1.6.3 software (AB SCIEX, version 1.6.3). And the data was log2-

transformed for statistical analysis to improve normality and was 

normalized. The normalized metabolic data was further processed 

by univariate statistical analysis [fold change (FC) analysis and 

student’s t-test] and multivariate statistical analysis [principal 

component analysis (PCA) and orthogonal partial least squares 

discriminant analysis (OPLS-DA)]. Unsupervised PCA was 

performed by R package (http://www.r-project.org, version 3.5.0) to 

clarify the overall metabolic difference and variation degree between 

the kidney samples. Supervised OPLS-DA model was generated 

using MetaboAnalystR (version 1.0.1) and was validated using a 

permutation test (200 times). The variable importance projection (VIP) 

value from the OPLS-DA model was calculated for investigating the 

contribution of a kidney metabolite to the separation between the 

groups. And the VIP values were visualized in the form of the S plot.

2.7 Screening of differential kidney metabolites and 
bioinformatics analysis

The metabolite with VIP value > 1, P-value < 0.05, and FC 
value > 1.5 (up-regulated) or < 0.67 (down-regulated) was screened 
as a differential kidney metabolite, which were visualized in a 
volcano plot. The cluster heatmap analysis of differential kidney 
metabolites was performed using ComplexHeatmap software (version 
2.2.0). The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (https://www.genome.jp/kegg) was used for annotation and 
enrichment analysis of the differential kidney metabolites to obtain 
specific metabolic pathways information. A differential kidney 
metabolite with metabolic pathways and closely related to the anti-

hypertensive effect of peptide NCW was identified as a potential 
kidney biomarker. Finally, a metabolic mechanism network of key 
potential kidney biomarkers and related metabolic pathways 
was constructed to clarify the anti-hypertensive mechanism of 
peptide NCW.

3.  Results and discussion

3.1 Data quality assessment by quality control analysis

To obtain reliable and repeatable data, the total ion current 

(TIC) curves of three QC samples were overlapped and analyzed 

in the positive and negative ion modes, respectively. As shown in  

Fig. S1, the TIC curves of the QC samples were basically completely 

overlapped in the peak intensity and retention time, indicating 

that the mass spectrometer had high stability when detecting the 

same sample at different times. This excellent stability of the mass 

spectrometer provides an important guarantee for the reliability and  

repeatability of data[19].

3.2 Multivariate statistical analysis of kidney metabolic profiles

A total amount of 613 kidney metabolites were detected in 

this study, and multivariate statistical analyses including PCA 

and OPLS-DA were performed based on these metabolites. PCA 

was utilized to explore the changes in the overall metabolic 

profiles by visualizing clusters and reducing the dimension of 

complex data[13]. The PCA score plot (3D) showed a distinct 

separation between the SHR-NCW and SHR-Untreated groups  

(Fig. 1A), which indicated that peptide NCW greatly altered the 

kidney metabolic profiles of SHRs.

Subsequently, an OPLS-DA model was conducted for improving 

the classification performance and obtaining the differential kidney 

metabolites. Similarly, the SHR-NCW group was clearly separated 

from the SHR-Untreated group in the OPLS-DA score plot (Fig. 1B),  

indicating the kidney metabolites were significantly affected after 

treatment with peptide NCW for 3 weeks. R2
Y and Q2 values as the 

important parameters of the OPLS-DA model could measure the 

goodness of interpretation rate and prediction ability, respectively. 

The closer the two parameters are to 1, the more reliable and stable 

the OPLS-DA model would be[20]. The R2
Y and Q2 values of the OPLS-

DA model were higher than 0.7, suggesting this reliable model was 

effectively established, and had outstanding interpretation rate and 

prediction ability. Moreover, the result of the permutation test (200 

times) showed that the P-value of R2
Y was less than 0.005 and the 

P-value of Q2 was less than 0.05 (Fig. 1C), indicating the establishing 

OPLS-DA model was optimal and not overfitting in the current study.

To investigate the contribution of kidney metabolites to intergroup 

separation, S plot analysis was carried out based on the VIP values 

calculated by the OPLS-DA model[21]. In the S plot (Fig. 1D), red 

dots represented the metabolites with VIP values > 1, while green 

dots represented the metabolites with VIP values < 1. There were 259 

metabolites with VIP values > 1, which were likely to be differential 

metabolites for anti-hypertensive effect of peptide NCW.
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3.3 Identification and classification analysis of differential 
kidney metabolites

Combined with univariate statistical analysis, a total number of 85 
metabolites were identified as differential kidney metabolites (Table S2).  
The difference of the expression levels of these differential kidney 
metabolites between the SHR-NCW and SHR-Untreated groups 
could be visualized by a volcano plot[22]. In the volcano plot  
(Fig. 2A), 40 differential kidney metabolites represented by red dots 
were up-regulated (FC > 1.5), and 45 differential kidney metabolites 
represented by green dots were down-regulated (FC < 0.67) after 
treatment with peptide NCW in SHRs. In addition, the differential 
kidney metabolites were roughly divided into 10 categories  
(Fig. 2B), main concentrating on amino acid and its metabolites 
(16.47%), organic acid and its derivatives (16.47%), fatty acyls 

(15.29%), and nucleotide and its metabolites (14.12%), indicating 
which played important roles for anti-hypertensive effect of 
peptide NCW. The change trends and number of differential kidney 
metabolites contained in each type of metabolite were shown in 
Fig. 2C. Moreover, the association and change law of differential 
metabolites could be quickly obtained by cluster heatmap analysis[23].  
The cluster heatmap showed that the SHR-NCW and SHR-Untreated 
groups were clearly divided into two different bands, and most 
differential kidney metabolites were well clustered (Fig. 2D).

3.4 KEGG pathway annotation and enrichment analysis of 
differential kidney metabolites

To better understand how the changes of differential kidney 
metabolites caused by peptide NCW intervention posed anti-
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hypertensive effect in the SHRs, the KEGG pathway annotation and 

enrichment analysis was performed based on the KEGG database. 

A total of 41 differential kidney metabolites were annotated and 

distributed in 79 metabolic pathways. The top 20 KEGG metabolic 

pathways with the most significant enrichment were displayed in 

Fig. 3. Ultimately, comprehensively analysis of the P-values and 

rich factors of metabolic pathways, and the biological functions, VIP 

values, and FC values of the metabolites contained in these metabolic 

pathways, 8 metabolic pathways (linoleic acid metabolism, folate 

biosynthesis, one carbon pool by folate, antifolate resistance, synthesis 

and degradation of ketone bodies, pyrimidine metabolism, β-alanine 

metabolism, and retinal metabolism) were chosen as the important 

pathways closely associated with the anti-hypertensive effect of 

peptide NCW, and 16 differential kidney metabolites were identified 

as potential kidney biomarkers based on the results of KEGG pathway 

enrichment analysis and related literature (Table 1). Additionally, 

the expression intensities of these potential kidney biomarkers were 

visualized in the form of violin plots (Fig. 4). Compared with the 

SHR-Untreated group, the levels of eicosapentaenoic acid (EPA), 

15-oxo-eicosatetraenoic acid (15-oxo-ETE), 7,8-dihydrobiopterin 

(BH2),  3-hydroxybutyrate,  malonic acid,  barbituric acid, 

deoxycytidine, thymine, 4-aceylaminobutyric acid, and 11-cis-

retinol in the SHR-NCW group were significantly increased, whereas 

those of 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME), 

9-hydroperoxyoctadecadienoic acid (9-HpODE), 10-formyl-

tetrahydrofolate (10-formyl-THF), uridine-5-monophosphate (UMP), 

L-aspartate, and spermidine were significantly decreased. The above 

potential kidney biomarkers alterations induced related metabolic 

pathways changes, thus improving metabolism disorders and lowering 

blood pressure in SHRs.
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Table 1
Potential kidney biomarkers and related key pathways associated with the anti-hypertensive effect of peptide NCW.

No. Potential biomarkers VIP value FC value Trend Classification Related key pathways

1 9,10-DiHOME 1.609 0.541 ↓ Oxidized lipids Linoleic acid metabolism

2 9-HpODE 1.399 0.660 ↓ Oxidized lipids Linoleic acid metabolism

3 EPA 1.285 2.208 ↑ Oxidized lipids Biosynthesis of unsaturated fatty acids

4 15-Oxo-ETE 1.417 1.767 ↑ Oxidized lipids Arachidonic acid metabolism

5 7,8-Dihydrobiopterin 1.210 1.801 ↑ Heterocyclic compounds Folate biosynthesis

6 10-Formyl-THF 1.293 0.380 ↓ Heterocyclic compounds One carbon pool by folate; antifolate resistance

7 3-Hydroxybutyrate 1.856 2.280 ↑ Organic acid and its derivatives Synthesis and degradation of ketone bodies

8 Malonic acid 1.879 2.349 ↑ Organic acid and its derivatives Pyrimidine metabolism; β-Alanine metabolism

9 Barbituric acid 1.554 2.162 ↑ Heterocyclic compounds Pyrimidine metabolism

10 Deoxycytidine 1.485 1.645 ↑ Nucleotide and its metabolites Pyrimidine metabolism

11 Thymine 1.812 2.203 ↑ Nucleotide and its metabolites Pyrimidine metabolism

12 UMP 1.451 0.558 ↓ Nucleotide and its metabolites Pyrimidine metabolism

13 L-Aspartic acid 1.645 0.642 ↓ Amino acid and its metabolites β-Alanine metabolism

14 Spermidine 1.824 0.423 ↓ Alcohol and amines β-Alanine metabolism

15 4-Acetamidobutyric acid 1.501 1.909 ↑ Organic acid and its derivatives Arginine and proline metabolism

16 11-cis-retinol 1.382 4.449 ↑ Coenzyme and vitamins Retinal metabolism
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3.5 Construction and analysis of the metabolic mechanism network 
of potential kidney biomarkers and related metabolic pathways

To intuitively understand the anti-hypertensive mechanism of 
peptide NCW, a metabolic mechanism network was constructed based 
on these potential kidney biomarkers and related metabolic pathways 
(Fig. 5).

As a ω-6 polyunsaturated fatty acid (PUFA), linoleic acid has 
an important effect on cell signal transduction and gene expression 
regulation, and its oxidation products are widely used as important 
homeostatic regulators of inflammation, vasodilation, and other 
physiological processes[24]. 9,10-DiHOME and 9-HpODE, which 
were involved in linoleic acid metabolism, were decreased by 
0.541-fold and 0.66-fold in the SHR-NCW group, respectively. 
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9,10-DiHOME is a leukotoxin derivative of linoleic acid diol 
produced by inflammatory leukocytes, and has cytotoxicity and 
tissue toxicity. Mitochondrial dysfunction, increased oxidative 
stress, and apoptosis are the main toxicity characteristics of 9, 
10-DiHOME[25]. It has been reported that high concentrations of 
9,10-DiHOME and 9,10-EpOME can activate AP-1 and NF-κB  
transcription factors, both of which mediate inflammation[26]. 
However, 9-HpODE is extremely unstable and further decomposed 
to form 9-hydroxyoctadecaenoic acid (9-HODE) in vivo [27]. 
9-HODE has pro-inflammatory properties and can promote the 
apoptosis of monocytes and macrophages[28]. However, EPA 
and 15-oxo-ETE as the important related metabolites of linoleic 
acid metabolism, were significantly increased by 2.208-fold and  
1.767-fold after intervention with peptide NCW. EPA is an important 
ω-3 PUFA produced from α-linolenic acid by desaturase and 
elongation enzyme. EPA is believed to improve impaired endothelial 
function and increase endothelium-dependent vasodilation, mainly 
by activating endothelial nitric oxide synthase (eNOS) and promoting 
nitric oxide (NO, a endothelial derived relaxing factor) production 
in endothelial cells[29]. In addition, 15-oxo-ETE is formed from 
15-hydroxyprostaglandin dehydrogenase-mediated oxidation of  
15-HETE. And 15-oxo-ETE is a vital anti-inflammatory mediator, 
which can activate anti-inflammatory Nrf2 signaling and downregulate 
pro-inflammatory cytokine[30]. Combining of all the above analysis, 
peptide NCW might regulate the related metabolites of linoleic 
acid metabolism in the kidney of SHRs to inhibit inflammation and 
apoptosis, and improve NO production.

The role of folate related pathways in maintaining homeostasis, 
material metabolism, and energy metabolism has been gradually 
underscored. Compared with the SHR-Untreated group, the level 
of BH2 in folate biosynthesis was increased by 1.801-fold in the 
SHR-NCW group. BH2 is reduced to tetrahydrobiopterin (BH4) by 
dihydrofolate reductase, and BH4 is an important NOS cofactor[31]. 
BH4 can stabilize and couple the dimer structure of eNOS, and 
catalyze the conversion of L-arginine to L-guanidine and NO. BH4 
deficiency can lead to eNOS uncoupling, resulting in reduced NO 
synthesis, increased peroxide synthesis, and vascular endothelial 
damage[32]. In this study, the change of BH2 might increase the 
production of BH4 to attenuate hypertension by mediating the eNOS 
uncoupling and improving the production of NO in the kidney of 
SHRs. In addition, one carbon metabolism is necessary for the 
biosynthesis required for cell proliferation and vital for redox 
balance[33]. 10-Formyl-THF as a pivotal precursor of purine and 
N-formylmethionine synthesis, was decreased by 0.38-fold in the 
pathways of one carbon pool by folate and antifolate resistance after 
treatment with peptide NCW. Reportedly, if an accumulation of 
10-formyl-THF occurs in endothelial cells, this accumulation might 
influence the adjacent pathways of folate metabolism, and then affect 
the activity of eNOS[34].

3-Hydroxybutyrate, which was involved in synthesis and 
degradation of ketone bodies, was increased by 2.28-fold in the  
SHR-NCW group. As is well known, 3-hydroxybutyrate belongs to the 
ketone body family produced mainly by the liver, and has the abilities 
of anti-inflammatory, anti-oxidative, and preventing oxidative stress[35].  
And 3-hydroxybutyrate is a vital inhibitor of the over activation of 
the Nlrp3 inflammasome, which has a vital role in kidney injury and 
contributes to aggravating inflammation[36]. Nutritional supplement 

with the 3-hydroxybutyrate precursor 1,3-butanediol can attenuate 
hypertension and suppress kidney injury by inhibiting the renal 
Nlrp3 inflammasome formation in salt-sensitive hypertension[37]. 
Moreover, a recent study showed that 3-hydroxybutyrate was 
an autophagy-dependent vasodilator[38]. The above analysis 
suggested that peptide NCW might attenuate hypertension 
by  increas ing  the  leve l  of  3-hydroxybutyra te  to  inhib i t 
inflammation in the kidney of SHRs.

Pyrimidines are the basic constituents of DNA and RNA, and 
pyrimidine metabolism has been reported to be closely associated 
with the development of hypertension and its complications[39]. 
Compared with the SHR-Untreated group, malonic acid, barbituric 
acid, deoxycytidine, and thymine, which were involved in pyrimidine 
metabolism, were increased in the SHR-NCW group by 2.349-fold, 
2.162-fold, 1.645-fold, and 2.203-fold, respectively. And the level 
of UMP was decreased by 0.558-fold. Malonic acid can reduce the 
production of mitochondrial ROS in Ang II-induced hypertension, 
which contributes to improving oxidative stress and endothelial 
dysfunction[36]. However, the anti-hypertensive mechanism of 
barbituric acid (a condensation metabolite of malonic acid and urea) 
is still not clear. Deoxycytidine is the main nucleoside of DNA, 
thymine is the pyrimidine base, and UMP is the uracil nucleotide, 
which participate in almost all biochemical reactions[40]. This 
suggested that the anti-hypertensive mechanism of peptide NCW 
might be related to the regulation of deoxycytidine, thymine, and 
UMP levels in pyrimidine metabolism. Importantly, pyrimidine 
metabolism and β-alanine metabolism were well connected by 
malonic acid. In β-alanine metabolism, the levels of L-aspartate 
and spermidine were decreased by 0.642-fold and 0.423-fold in the 
kidney of SHRs after intervention with peptide NCW. Spermidine 
was converted to 4-aceylaminobutyric acid by complex multi-step 
reaction. 4-Aceylaminobutyric acid as the precursor of 4-aminobutyric 
acid (GABA) was increased by 1.909-fold in the SHR-NCW group. 
Reportedly, GABA inhibits the release of norepinephrine from 
sympathetic nerve fibers by acting on presynaptic GABAB receptors, 
thereby suppressing the increase of blood pressure in SHRs[41]. In 
short, pyrimidine metabolism and β-alanine metabolism have complex 
multifaceted effect in hypertension, the anti-hypertensive effect of 
peptide NCW in this study might be the result of comprehensive 
action of many active substances in pyrimidine metabolism and 
β-alanine metabolism.

Retinol (vitamin A) is a vital regulator of cell proliferation, 
differentiation, apoptosis, immune function, and visual system. 
The kidney is a target organ for retinol action[42]. 11-cis-retinol was 
involved in retinol metabolism, which was increased by 1.645-fold 
after intervention with peptide NCW. Emerging findings indicated 
that retinol seemed to have a vital inhibitory effect on inflammation 
and might improve endothelial function by regulating NO related 
pathway[43]. This suggested that retinol might play an important role 
in lowering blood pressure, and peptide NCW intervention increased 
the expression level of 11-cis-retinol, which contributes to inhibiting 
inflammation and regulating NO production in the kidney of SHRs.

4.  Conclusion

In summary, the widely targeted kidney metabolomics analysis 
indicated kidney metabolites disorder caused by hypertension was 
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partially alleviated by peptide NCW intervention. Peptide NCW 
might exert anti-hypertensive effect by suppressing inflammation 
and improving NO production in the kidney of SHRs under the 
regulation of linoleic acid metabolism, folate related pathways, 
synthesis and degradation of ketone bodies, pyrimidine metabolism, 
β-alanine metabolism, and retinal metabolism. This study will 
provide an important clue and insight for the anti-hypertensive 
mechanism of peptide NCW, and provide a theoretical basis for 
the development and application of ACE inhibitory peptides in the 
prevention and improvement of hypertension. In future studies, 
the relationship between the changes in kidney metabolites and the 
underlying anti-hypertensive mechanism will be further validated by 
target metabolomic studies, cell experiments, and other biological 
technologies.
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