
 X. Liang et al. / Food Science and Human Wellness 13 (2024) 813-822 813

1.  Introduction

Atherosclerosis (AS) related cardiovascular disease is a major 
public health problem, that has a high mortality rate. The theory of 
lipid infiltration and inflammation is dominant among the theories 
of AS pathogenesis[1]. The formation of foam cells by disordered 
lipid metabolism is closely related to the regulation of cholesterol. 
Meanwhile, the inflammatory reaction is another key factor to 
the occurrence of AS[2]. As a key signal transduction receptor of 
the immune response, toll-like receptor 4 (TLR4) participates in 
the regulation of the inflammatory response, thus affecting the 
occurrence and development of AS[3-4]. TLR4 induces the activation 
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of transcription factor nuclear factor-κB (NF-κB), leading to the 
production of a wide range of pro-infl ammatory factors such as  tumor 
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)[5]. Inhibition of 
TLR4/NF-κB signaling pathway is a biological target for reducing 
infl ammatory response and anti-atherosclerosis[6].

Studies have found that the diversity of intestinal flora is 
negatively correlated with the occurrence and development of AS. 
The lower the amount of variation and the number of microbial 
species in the gut, the higher the risk of AS. Intestinal microbial 
metabolites promote the secretion of cytokines by host immune 
cells and indirectly influence AS by regulating lipid metabolism 
and inflammation[7].  The  widely-targeted metabolomics has been 
widely used to determine changes in intestinal metabolites. The 
main purpose is to select metabolites with signifi cant biological and 
statistical differences among biological samples and on this basis to 
elucidate the metabolic processes and the mechanisms underlying the 
observed changes[8-9]. 
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Probiotics play an important role in balancing and regulating 
intestinal microbiota diversity and intestinal microbiota metabolites, 
and participate in various pathways related to intestinal microbiota[10].  
Metabolites produced by probiotics can also alter the abundance of 
other flora and improve AS[11]. Lactobacillus plantarum ZDY04 and 
Bifidobacterium lactis Probio-M8 involve in reducing TMAO and 
improving atherosclerotic cardiovascular disease via the modulation 
of the gut-heart axes[12-13]. Lactobacillus fermentum ZJUIDS06 
participates in SCFA to improve lipid metabolism through gut 
microbiota[14]. The Bifidobacterium animalis subsp. lactis F1-7  
(B. animalis F1-7) used in this experiment was isolated from healthy 
infant feces in our laboratory. In different models, it has been found 
that B. animalis F1-7 effectively reduces lipid metabolism and 
inflammation, which has the potential to improve atherosclerosis. 
Therefore, we established the animal model of AS by giving high fat 
diet to ApoE-/- mice. Based on the TLR4/NF-κB pathway, combined 
with the results of widely-targeted metabolomics, we evaluated the 
effects of B. animalis F1-7 and its metabolites on the inflammatory 
response of atherosclerotic mice, to identify the specific targets and 
mechanisms of probiotics in alleviating the AS-related inflammatory 
response. 

2  Materials and methods

2.1  Strain and culture

B. animalis F1-7 was stored in Functional Dairy and Probiotic 
Engineering Laboratory of the Ocean University of China (No. CCTCC  
M2020833). The strain was activated for two generations and 
inoculated in MRS medium at 37 °C for 24 h. The strain was 
centrifuged at 5 000 × g at 4 °C for 5 min. The precipitates were 
washed twice with phosphate buffered saline and then redissolved with 
PBS. The viable bacteria amount was adjusted at 1 × 108 CFU/mL  
by colony counting method. 

2.2  Mice and experimental design

Ten male C57BL/6J mice and 30 male ApoE-/- mice on a C57BL 
background at 8 weeks of age, weighing 18–20 g, were purchased 
from Beijing Vital River Laboratory Animal Technology Co., Ltd. 
(Beijing, China). The animal room was maintained at a constant 
temperature (21–23 °C) and humidity (40%–60%), with a 12 h 
light/dark cycle. The mice were fed with normal diet or high fat 
diet provided by Keao Xieli (Beijing, China). The composition of 
normal and high fat diets was shown in Table 1. All experiments 
were approved by the Laboratory Animal Ethics Committee of Ocean 
University of China (approval number: SPXY2020060502).

After adaptive feeding for 7 days, C57BL/6J mice as the control 
group were fed with normal diet during the experiment (Control, 
n = 10). The ApoE-/- male mice were fed with high fat diet for  
6 weeks, then randomly divided into 3 groups in each group as follows: 
1) Atherosclerosis group (AS, n = 10); 2) Drug group (M, n = 10),  
gavaged with 0.25 mL atorvastatin (10 mg/kg); 3) B. animalis F1-7 
intervention group (F1-7, n = 10), gavaged with 0.25 mL 1 × 108 CFU/mL  
B. animalis F1-7. Both control and AS groups were gavaged with 0.25 mL  
PBS and the mice in all the groups were given daily gavage. The dose 
of the drug and probiotic used in this study were similar to those used 

in previous reports[15-17]. Before the end of the intervention, the feces 
of the mice were collected and stored at –80 °C for future use. 

Table 1
Composition of normal and high fat diets.

Nutrient Normal diet High fat diet

Carbohydrates (g/100 g) 52 20

Proteins (g/100 g) 20.1 28

Lipids (g/100 g) 5.9 33

Casein (g/kg) 200 200
L-Cystine (g/kg) 3 3

Corn starch (g/kg) 397 72.8

Maltodextrin (g/kg) 132 100

Sucrose (g/kg) 100 172.8

Cellulose (g/kg) 50 50

Soybean oil (g/kg) 70 25
t-Butylhydroquinone (g/kg) 0.014 25

Lard oil (g/kg) 0 177.50

Mineral mix (g/kg) 35 10

Vitamin mix (g/kg) 10 10

Choline bitartrate (g/kg) 2.5 2

Potassium bitartrate (g/kg) 0 16.50

Calcium carbonate (g/kg) 0 5.5

FD&C Red dye (g/kg) 0 0.05

Dicalcium phosphate (g/kg) 0 13

All mice were sacrificed after 12 weeks of treatment, the mice 
fasted overnight. After the mice were anesthetized, collected the 
plasma and centrifuged at 4 000 × g for 15 min. The serum was 
collected and stored at –80 °C. The intestinal tissues and cecal 
contents were collected and part of the intestinal tissues were fixed 
with 4% paraformaldehyde fixative, the other part was preserved for 
other determination. The aortas, aortic roots and arches were excised 
for histological examination.

2.3  Atherosclerotic lesion analysis 

The aortas of the mice were harvested and fixed in 4% 
paraformaldehyde. 4-μm-thick paraffin-embedded sections of aortas 
were stained with Oil Red O and H&E staining[18]. The quantification 
of lesion area and size was performed with Image J software. 

2.4  Immunohistochemical analysis

Immunohistochemical staining was performed on the thoracic 
aortas of the mouse to detect F4/80, NF-κB p65, TLR4 and myeloid 
differentiation factor 88 (MyD88) (Abcam, UK, 1:500) as previously 
described[19]. The positively stained area was analyzed by Image J 
software.

2.5  Measurement of inflammatory cytokines

Inflammatory molecules TNF-α and IL-1β in serum of the mice 
and macrophage induced foam cells were determined by ELISA 
assays (Jiancheng, Nanjing, China).

2.6  Quantitative RT-PCR analysis

The transcription levels of TLR4, MyD88, NF-κB p65, TNF-α and 
IL-1β genes in ileum tissues and the macrophage-induced foam cells 
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were determined, and the method was used the same as in previous 
study[20]. The mRNA expression amplification primer sequences of 
related genes are shown in Table 2.

2.7  Western blot analysis

The protein from colon tissues in mice and the macrophage 
induced foam cells was extracted and the protein concentration was 
determined using the BCA Protein Assay Kit (Beyotime, China). The 
samples were separated by SDS polyacrylamide gel electrophoresis, 
and then transferred to the PVDF membrane. The primary antibody 
was NF-κB p65 (NF-κB p65, 1:1 000 dilution, Abcam, US), 
phosphorylated p65 NF-κB (NF-κB p-p65, 1:1 000 dilution, Abcam, 
US). The internal reference was β-actin antibody (diluted at 1:1 000,  
Abcam, US) and the target proteins were detected with HRP-

conjugated secondary antibody (1:7 500 dilution, Cell Signaling, US). 
The bands were measured with ECL chromogenic kit (Beyotime, 
China) by using the Bio-Spectrum Imaging Detection System (Tanon, 
China). Image J software was used for grayscale analysis[21].

2.8  Determination of intestinal metabolites by widely-
targeted metabolomics

The intestinal contents of the mice were thawed on ice. A 50 mg  
(± 1 mg) of each sample was homogenized with 500 μL of ice-cold 
methanol/water (70%, V/V) with internal standard. The samples 
were vortexed for 3 min, sonicated for 10 min in an ice water bath, 
and vortexed again for 1 min. They were then centrifuged with  
12 000 r/min at 4 °C for 10 min. The widely-targeted metabolomics 
was performed at Wuhan Metware Biotechnology Co., Ltd. (Wuhan, 
China) as previously described[22-23].

2.9  Cell culture and intervention 

RAW264.7 cells were purchased from the cell bank of the Chinese 
Academy of Sciences (Shanghai, China). RAW264.7 macrophages 
were induced to form foam cells by oxidized low density lipoprotein 
(ox-LDL). The RAW264.7 cells were grown to 80% with high 
glucose DMEM medium containing 10% FBS and 1% double 
antibody in the cell incubator at 37 °C and 5% CO2. The RAW264.7 
cells were planted in a 6-well plate at a density of 5 × 105 cells  
per well. The intervention of cell experiment was divided into 
three groups: 1) The control group was added with medium; 2) The  
ox-LDL group was added with 50 μg/mL ox-LDL (Yiyuan, China);  

3) The acetyl-L-carnitine (ALC) group was treated with 50 μg/mL 
of ox-LDL and 10 mmol/L of ALC (Sigma Aldrich, US). These 
concentrations were based on those used in previous studies[24-25]. 
After 24 h of intervention, the cells were collected for subsequent 
experiments.

2.10  Determination of lipid accumulation in macrophage-
induced foam cells 

The cell medium was discarded and the macrophage induced foam 
cells were washed twice with PBS, fixed with 4% paraformaldehyde 
fix solution for 2 h, and stained with Oil Red O and Bodipy[26]. The 
accumulation of lipid droplets in the cells was observed using an 
inverted microscope (Olympus, Japan).

2.11  Statistical analysis

All data were analyzed statistically with SPSS v.22.0 software 
and presented as mean ± standard deviation. One-way analysis of 
variance and Tukey-Kramer Test were used to analyze the differences 
among the groups. P < 0.05 was considered statistically significant. 
Each experiment was repeated three times.

3.  Results

3.1  B. animalis F1-7 reduced aortic plaque accumulation in mice

The results of H&E and Oil Red O staining of the aortic sinus 
showed that, compared with the control group, the intimal integrity 
was damaged in the arterial sections of AS group (Fig. 1A). A large 
number of foam cells and inflammatory cells accumulated in the 
intima. The AS group showed significant atherosclerotic plaques 
formation in the aorta. The plaque area was significantly reduced in 
the drug group and B. animalis F1-7 group than that in the AS group. 
The red stained lipid area was analyzed, and the percentage of the 
lipid area to the total area was calculated (Fig. 1B). Compared with 
AS group, the plaque area was significantly reduced in the M group 
(decreased by 63.8%) and the B. animalis F1-7 group (decreased by 
52.8%) (P < 0.05). There was no significant difference between the 
M group and the B. animalis F1-7 group (P > 0.05).

3.2  B. animalis F1-7 improved the levels of serum 
inflammatory factors in mice

Changes in serum inflammatory factors were shown in Fig. 2. 

Table 2
RT-PCR amplified primers.

Gene Forward (5’-3’) Reverse (5’-3’)

β-actin ACTGCTCTGGCTCCTAGCAC CCACCGATCCACACAGAGTA

TLR4 CACAGAAGAGGCAAGGCGACAG GAATGACCCTGACTGGCACTAACC

MyD88 AGCAGAACCAGGAGTCCGAGAAG GGGCAGTAGCAGATAAAGGCATCG

NF-κB p65 TCGAGTCTCCATGCAGCTACGG CGGTGGCGATCATCTGTGTCTG

TNF-α GGACTAGCCAGGAGGGAGAACAG GCCAGTGAGTGAAAGGGACAGAAC

IL-1β TCGCAGCAGCACATCAACAAGAG AGGTCCACGGGAAAGACACAGG
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The serum level of TNF-α in atherosclerotic mice was significantly 
increased by the high fat diet. Both the M group and the B. animalis 
F1-7 group reduced the TNF-α level (P < 0.05). Compared with the 
control group, the level of IL-1β in serum of ApoE-/- mice in AS 
group was increased by 2 times. B. animalis F1-7 effectively reduced 
the expression of IL-1β, and there was no difference in the effect with 
the drug (P > 0.05).
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Fig. 2  Effects of B. animalis F1-7 administration on serum pro-inflammatory 
cytokines. Serum (A) TNF-α and (B) IL-1β levels. Different letters indicated 

significant differences (P < 0.05).

3.3  B. animalis F1-7 alleviated inflammation in mice aortic 
sinus of ApoE-/- mice

Immunohistochemical results of F4/80 showed that the positive 
area in aortic plaques of atherosclerotic mice induced by high fat 
diet was significantly increased, compared with that of normal mice 
(P < 0.05) (Fig. 3). It was indicated that the content of macrophages 
was increased in AS group. After treatment with the drug and  
B. animalis F1-7, the F4/80 positive area was significantly reduced 
(P < 0.05). The TLR4 positive area in aorta sinus of atherosclerotic 
mice was significantly elevated. The expression of TLR4 in the AS 
group was 2.1 times higher than that in the control group (P < 0.05). 
The B. animalis F1-7 group was able to reduce the TLR4 positive 
area. There was no significant difference with the M group. The 
high fat diet activated the inflammatory response pathway, leading 
to aortic inflammation. The expression of MyD88 and NF-κB p65 
was upregulated in the AS group. B. animalis F1-7 intervention 
effectively downregulated their expression, reducing the positive 
areas of MyD88 and NF-κB p65 in aorta and improving the 
inflammatory response (P < 0.05).

3.4  B. animalis F1-7 decreased the gene expression of 
inflammation in mice intestine

The expression of intestinal inflammation related genes was 
measured, and the results were shown in Fig. 4A. High fat diet 
increased the expression of inflammatory factors in the intestine of 
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Fig. 1  (A) H&E and Oil Red O staining of transverse sections of the aortic sinus and (B) the plaque lipid content were assessed by Oil Red O staining. Different 
letters indicated significant differences (P < 0.05). The arrow points to the plaques of the aorta.



	 X. Liang et al. / Food Science and Human Wellness 13 (2024) 813-822	 817

ApoE-/- mice. Compared with the AS group, after treatment with the 
drug and B. animalis F1-7, TNF-α was significantly downregulated 
(P < 0.05). The IL-1β expression in AS group was increased by 
2.9 fold compared to the control group, and the B. animalis F1-7 
downregulated the IL-1β expression by 40.5%. Meanwhile, compared 
with the AS group, B. animalis F1-7 effectively downregulated 
the gene expressions of TLR4 ,  MyD88  and NF-κB p65  in  
ApoE-/- mice, and there was no statistical difference with the M group. 
High fat diet increased the protein expression of  NF-κB p65 and the 
phosphorylation level of p65 in the intestinal tract of the ApoE-/- mice, 
and activated the inflammatory pathway. B. animalis F1-7 effectively 
reduced the NF-κB p65 and its phosphorylated protein level (Fig. 4B). 
Both probiotic and drug effectively improved inflammation, according 
to the analysis, there was no significant difference between the two 
groups (P > 0.05) (Fig. 4C).

3.5  Changes in mice intestinal metabolites after B. animalis 
F1-7 intervention by widely-targeted metabolomics analysis

The widely-targeted metabolomics was used to analyze the 
differences of intestinal metabolites between the AS and B. animalis 

F1-7 groups. Three key parameters R2
X, R2

Y and Q2 were obtained by 
the Orthogonal partial least squares discriminant analysis (OPLS-DA)  
analysis, which were 0.606, 0.993 and 0.549, respectively. 
Permutation testing of the model’s quality (Fig. 5A) indicated that the 
model was not over fitted. OPLS-DA score showed that there were 
significant differences in the intestinal metabolic profiles between 
the AS group and the B. animalis F1-7 group (Fig. 5B). A total of 48 
metabolites (downregulated, 25; upregulated, 23) were significantly 
different between the AS group and the B. animalis F1-7 group. The 
fold change (FC) values of the metabolites between the two groups 
were calculated. After the differential multiple log2 treatment, the 
top 20 metabolites with the largest changes were displayed in bar 
chart (Fig. 5C) and the top 10 metabolites with the largest FC values 
were selected for radar map (Fig. 5D). These were mainly included 
aliphatic acylates, bile acids and sterol esters. The pathway-associated 
metabolite sets (SMPDB) was selected for enrichment analysis of 
differential metabolites. These potential biomarkers were mainly 
enriched in 25 pathways, such as the beta oxidation of very long 
chain fatty acids pathway, carnitine synthesis, bile acid biosynthesis 
and biotin metabolism pathway (Figs. 5E-F). Among the top 10 
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metabolites, ALC (detection index number, MEDP0510), as carnitine 
derivatives, has been implicated in metabolic pathways, such as fatty 
acid β-oxidation, energy metabolism and anti-inflammatory. We then 
conducted a correlation analysis between ALC and key indicators 
of AS (Fig. 5G). It was found that the ALC was highly correlated 
with atherosclerotic plaque area, the serum indicators TG and 
TC, and inflammatory indicators, especially TNF-α. The ALC of 
the B. animalis F1-7 group was significantly increased, 2.5 times  
higher than that of the AS group (Fig. 5H). According to the 
results, ALC might be a key metabolite affecting the inflammatory 
response in AS.

3.6  Effects of ALC on lipid accumulation and inflammation 
in foam cells

To further verify the effect of ALC on atherosclerotic 
inflammation, the ox-LDL was used to induce RAW264.7 cells to 
construct a foam cell model in vitro. The amount of lipid phagocytosis 
in the cells significantly increased after the ox-LDL intervention. On 
this basis, the administration of ALC intervention can effectively 
reduce the phagocytosis of macrophages with ox-LDL, thus reducing 
the generation of foam cells. As shown in Fig. 6A, the Oil Red O 
treated foam cells showed the presence of colored lipid droplets of 
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Fig. 5  Effects of B. animalis F1-7 on metabolomics of cecal content in ApoE-/- mice. (A) The principal component analysis (PCA) model of metabonomic data from 
AS and B. animalis F1-7 groups. (B) OPLS scores plot of the AS and B. animalis F1-7 groups. (C) The bar chart of top 20 upregulated metabolites and down-regulated 
metabolites between AS and B. animalis F1-7 groups. (D) Radar plots of the top 10 differential metabolites with maximum FC values. (E) The biomarker enrichment 

analysis by SMPDB. (F) The biomarker metabolic pathway map. (G) Correlation analysis of differential metabolite ALC and key indicators of atherosclerosis. *P < 0.05 
and **P < 0.01. (H) The Raw intensity of ALC in AS and B. animalis F1-7 groups. Different letters indicated significant differences (P < 0.05).
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varying sizes around individual cells. After ALC administration, the 
number of lipid droplets around the cells was significantly reduced. 
Bodipy staining showed that the fluorescence intensity in the foam 
cell model group was significantly increased, and ALC significantly 
reduced the fluorescence intensity (Fig. 6B). These results showed 
that ALC improved the intracellular lipid accumulation and reduced 
the formation of foam cells.

3.7  Effects of ALC on inflammatory cytokines in foam cells

The inflammatory cytokines in foam cells of each group were 
determined. Compared with the control group, the TNF-α in ox-LDL 
group was significantly increased, and the foam cells secreted more 
pro-inflammatory factors, which increased the inflammatory response. 
ALC reduced the inflammatory level of foam cells, downregulated 

TNF-α, as shown in Fig. 7A. Ox-LDL intervention also increased 
the IL-1β level, which was downregulated by ALC. There was no 
significant difference between the ALC and control groups (Fig. 7B). 

The gene expression related to inflammatory response in each 
group was measured, as shown in Fig. 7C. The expression of TLR4 
was 2 times higher in ox-LDL group and significantly downregulated 
in ALC group. The changes of MyD88 and NF-κB p65 were 
consistent with those of TLR4, and the expression levels in ox-LDL 
group were increased by more than 1 time (P < 0.05). After the 
intervention with ALC, the gene expression levels were restored to 
the levels of the control group. The expression of TNF-α in ox-LDL 
group was upregulated by 2 times compared with the control group. 
After ALC intervention, the expression of TNF-α was downregulated 
by 48% compared with ox-LDL group. the expression of IL-1β was 
significantly increased in the foam cells. On the basis of this, the 
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expression of IL-1β was effectively reduced by ALC, which was 
decreased by 31% compared with ox-LDL group. 

From the perspective of protein expression, it was found that the 
levels of NF-κB p65 and p-p65 in macrophage-foam cells induced by 
ox-LDL were significantly increased (P < 0.05) (Figs. 7D-E). While 
ALC effectively downregulated the expression of NF-κB p65 and 
NF-κB p-p65 to the normal levels. In summary, the results indicated 
that ALC had the ability to reduce the expression of pro-inflammatory 
factors and improve inflammatory response by downregulating the 
TLR4/NF-κB pathway.
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4.  Discussion

The development of atherosclerotic plaques involves abnormal 
inflammatory cell recruitment and foam cell formation[27-28]. 
Inflammation plays a key role in the occurrence and development of 
AS[29]. Probiotics can alter the intestinal flora and its metabolites to 
improve atherosclerotic cardiovascular diseases, but the mechanism 
remains unclear. Therefore, this study evaluated the changes of 
biochemical indexes and inflammatory response related gene 
expression in AS model mice from the perspective of inflammation. 
Combined with the results of widely-targeted metabolomics, clarified 
the specific mechanism of B. animalis F1-7 in improving AS. 

Studies have shown that many immune inflammatory cells and 
cytokines are involved in the occurrence and development of the 
inflammatory response, among which macrophages are the main 
components of atherosclerotic plaques. Activated macrophages 
are involved in advanced AS lesions together with other immune 
cells. Monocytes differentiate into M1 and M2 macrophages using 
monocyte colony stimulating factors[30]. Ox-LDL uptake by M1 
macrophages plays an important role in the formation of foam cells 
and in the rupture of atherosclerotic plaques[31]. Our study found 
that administration of B. animalis F1-7 reduced the accumulation of 
M1 macrophages in aorta and reduced the aortic plaque formation 
of the ApoE-/- mice. TLR4 is highly expressed in endothelial cells 
and macrophages in atherosclerotic plaques, and is a transmembrane 
protein on the cell surface, mainly recognizing microbial membrane 
components[32]. TLR4 binds to the MyD88 receptor to trigger 
downstream signaling cascades that lead to phosphorylation of 
activated serine protein kinase (MAPK) and the NF-κB, leading 
to transcription and expression of downstream pro-inflammatory 
cytokines such as TNF-α and IL-1β[33-35]. The transcription factor 
NF-κB regulates numbers of genes that involve in immune and 
inflammatory responses[36]. p65 (RELA) is one of the subunits of 
NF-κB transcription factor family and functions predominately 
as a transcription activator of pro-inflammatory cytokines[37]. 
Posttranscriptional modification, such as phosphorylation, of p65 
upon stimulation dictates the canonical mechanism for its nuclear 
translocation and activation[38]. We found that B. animalis F1-7 
markedly suppressed NF-κB activation and posttranscriptional 
modification. In support of this observation, Li et al.[39] reported that 
B. animalis reduced phosphorylated NF-κB p65 activation in HT-29  
cells. A previous study by Yang et al.[40] have shown that lactate 
suppresses NF-κB activation and nuclear translocation in RAW264.7 
cells. In agreement, we observed that B. animalis F1-7 decreased 
phosphorylation of p65 was accompanied by suppressed expression 
of TNF-α and IL-1β levels in ApoE-/- mice and macrophage-induced 
foam cells. These results suggest that B. animalis F1-7 may exert a 
potent anti-inflammatory in intestinal tract and aortic plaques through 
downregulating TLR4/NF-κB pathway. 

Changes in the intestinal microbiota are directly related to 
cardiovascular diseases, intestinal microbiota metabolites influence 
the formation of atherosclerotic plaques by influencing a variety of 
metabolic pathways[41]. According to the results of the widely-targeted 
metabolomics, we found that the intestinal metabolites of mice 
were significantly changed after they were given a high fat diet. The 
probiotic intervention effectively altered the composition of intestinal 
metabolites. By analyzing the differential metabolites between the 
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model group and the B. animalis F1-7 group, we identified the specific 
differential metabolite ALC. Enrichment analysis of differential 
metabolites by SMPDB also suggested that some differential 
metabolites caused significant changes in the Carnitine Synthesis 
pathway. ALC is the prominent acetylated derivative of carnitine. 
This compound is synthesized by carnitine acetyl-transferase which 
catalyzes the acetylation of carnitine[42]. In mammalian carnitine 
pools, ALC is the most significant quantitatively and functionally, 
with better bioavailability and antioxidant capacity[43]. ALC is one 
of metabolites within the TMAO-choline/carnitine gut microbiota 
pathway and a key component of long-chain fatty acids transportation 
process through mitochondrial membrane into the matrix where they 
go through β-oxidation[44]. The intestinal metabolite ALC in ApoE-/- 
mice was significantly increased after B. animalis F1-7 intervention. 
Studies had reported that ALC could improve inflammatory response 
and oxidative stress through TLR4/NF-κB pathway[45]. It could also 
reduce atherosclerotic plaque accumulation by acting on CRP and 
TNF-α[46]. Through correlation analysis, we found that ALC was 
highly negatively correlated with atherosclerotic plaque area, serum 
lipids, especially inflammatory indicators. It was speculated that ALC 
might be a potential functional component affecting the inflammatory 
response of AS. Therefore, ox-LDL-induced macrophage foam cell 
model was constructed to verify the effects of ALC on AS-associated 
inflammation in vitro.

TLR4 expression was significantly increased in ox-LDL induced 
foam cells in a dose- and time-dependent manner[47]. Similarly, our 
study found that ox-LDL intervention in macrophages significantly 
increased the expression of TLR4. On this basis, the administration 
of ALC effectively downregulated TLR4 and related inflammatory 
targets, reduced the generation of foam cells. The intestinal flora 
could metabolize L-carnitine, which could be converted to ALC and 
perform its biological function[48]. Therefore, it was speculated that B. 
animalis F1-7 might be directly involved in the acetylation process of 
carnitine or act on intestinal flora to affect the content of metabolite 
ALC, regulating the TLR4/NF-κB pathway and ultimately improving 
atherosclerotic inflammation. The specific mechanism still requires 
further exploration. 

5.  Conclusion

B.  animalis  F1-7  could  improve  AS  by  regulating  the 
inflammatory response in ApoE-/- mice. The widely-targeted 
metabolomics analysis showed that ALC, in the intestinal tract of 
atherosclerotic mice, was significantly increased after probiotic 
intervention and was closely related to the inflammatory response. 
The mechanism might be that the probiotic regulated the expression of 
key genes in TLR4/NF-κB pathway by increasing the content of ALC 
in the intestine, improving the inflammatory response, and ultimately 
reducing the plaque accumulation of AS. At the same time, the foam 
cell model was constructed to verify that ALC could reduce the lipid 
accumulation and inflammatory response through TLR4/NF-κB 
pathway. However, the source of intestinal ALC and related intestinal 
microbiota analysis still need to be further explored. Furthermore, 
combined with the previous study on the lipid-lowering ability of the 
strain, B. animalis F1-7 could regulate AS through multiple pathways, 
which has promising commercial and scientific implications. 
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