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Abstract: It is common sense that a phase interface (or grain boundary) could be used to scatter 
phonons in thermoelectric (TE) materials, resulting in low thermal conductivity (). However, a large 
number of impurity phases are always so harmful to the transport of carriers that poor TE performance 
is obtained. Here, we demonstrate that numerous superior multiphase (AgCuTe, Ag2Te, copper 
telluride (Cu2Te and Cu2−xTe), and nickel telluride (NiTe)) interfaces with simultaneous strong phonon 
scattering and weak electron scattering could be realized in AgCuTe-based TE materials. Owing to the 
similar chemical bonds in these phases, the depletion region at phase interfaces, which acts as carrier 
scattering centers, could be ignored. Therefore, the power factor (PF) is obviously enhanced from 
~609 to ~832 μW·m−1·K−2, and  is simultaneously decreased from ~0.52 to ~0.43 W·m−1·K−1 at 636 K. 
Finally, a peak figure of merit (zT) of ~1.23 at 636 K and an average zT (zTavg) of ~1.12 in the 
temperature range of 523–623 K are achieved, which are one of the best values among the 
AgCuTe-based TE materials. This study could provide new guidance to enhance the performance by 
designing superior multiphase interfaces in the TE materials.  

Keywords: thermoelectric (TE) materials; AgCuTe; phase interface; carrier scattering; phonon 
scattering  

 

1  Introduction 

Thermoelectric (TE) materials can be used to convert 
low-quality heat into high-quality electricity through  
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all-solid-state and environmentally friendly methods, 
attracting significant attention in the past decades [1,2]. 
To be a competitor with traditional power generators, 
the energy conversion efficiency of the TE materials 
needs to be improved, which is generally evaluated by 
the figure of merit (zT) [3]. High zT at the operating 
temperature leads to high energy conversion efficiency, 
and hence the TE materials with high Seebeck 
coefficient (S) and electrical conductivity (σ), and low 
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thermal conductivity () are promising candidates 
according to the equation: zT = S2σT/, where T is the 
absolute temperature. However, not only S, σ, and 
carrier thermal conductivity (e) are strongly related to 
the carrier concentration (n) [4], but also the electron 
and phonon transport is always blocked at the same 
scattering center, such as grain boundary or phase 
interface [5], so that this coupling restricts the further 
improvement of zT. 

To decouple the electron and phonon transport, the 
concepts of “phonon-glass electron-crystal” (PGEC) [6] 
and the following “phonon-liquid electron-crystal” 
(PLEC) [7] have been proposed to guide the search for 
excellent TE materials. The former results in the 
intensive studies on filled-skutterudites, clathrates, 
Zintl phases, and high-entropy alloys [8,9], while the 
latter pushes superionic chalcogenides to be hot, such 
as (Ag,Cu)2X (X = S, Se, and Te) [10] and argyrodite  
compounds (  

2
612 /A B Xm n

n m
  
 (A = Li, Cu, and Ag;  

B = Ga, Si, Ge, Sn, P, and As; X = S, Se, and Te)) 
[11,12]. The most common characteristic of the 
superionic chalcogenides is that one relatively rigid 
sublattice formed by immobile ions and another 
liquid-like sublattice composed of mobile ions coexist 
in a crystal structure. The weak dependence between 
these two sublattices contributes to tunable electrical 
properties and low lattice thermal conductivity (l) 
[10]. Among (Ag,Cu)2X, AgCuTe-based materials own 
special evolution of the crystal structure, and then 
substantial and similar phase compositions could be 
achieved [13], providing additional freedom to 
manipulate the transport of electrons and phonons. 

AgCuTe presents a phase transition at about 460 K 
with the increase of the temperature, from a complex 
hexagonal structure (space group: P3m1) to a cubic 
rocksalt phase (space group: Fm 3 m), where Ag and 
Cu are like the melting state (disordered) and are 
caught by the face-centered cubic sublattice of Te 
atoms [14]. According to a pseudo-binary phase 
diagram of Ag2Te and Cu2Te, impurity phases 
belonging to Ag- and Cu-based tellurides are easy to be 
generated by manipulating the stoichiometric ratio 
below the phase transition temperature [15], and even 
small monoclinic Ag2Te (space group: P21/c) exists in 
stoichiometric AgCuTe at room temperature. Because 
of Cu or/and Ag deficiency, intrinsic AgCuTe shows 
p-type TE materials, and its n always exceeds the 
optimized value. Besides, the high-temperature cubic 
phase with higher structural symmetry is demonstrated  

to exhibit superior TE performance than the 
low-temperature hexagonal phase, which may be due 
to the enhanced degeneracy of carrier pockets and 
softened chemical bonds. Therefore, inhibiting the 
generation of a cation vacancy and reducing the phase 
transition temperature were intensively adopted to 
improve TE properties of the AgCuTe-based materials. 
For example, alloying Se in a Te sublattice could be 
applied to both suppress the concentration of the cation 
vacancy and accelerate the hexagonal–cubic phase 
transition, elevating the peak zT values to above 1 
[13,14,16,17]. I-doping and manipulation of the Ag : 
Cu ratio were also used to obtain a cubic structure at 
room temperature and decrease the cation vacancy, 
respectively [18–20]. However, tailoring the phase 
interface to decouple the transport of electrons and 
phonons has nearly never been noticed in the AgCuTe- 
based TE materials. 

It is claimed that the phonon scattering in the TE 
materials could be greatly enhanced at the all-scale 
hierarchical architectures [21–23], including phase 
interface and grain boundary, but TE matrixes with 
small impurity phases were always constructed to 
scatter phonons without obviously disturbing the 
carriers in this common method. In this study, we 
demonstrate that a superior multiphase interface with 
simultaneous strong phonon scattering and weak 
electron scattering could be realized in the AgCuTe- 
based TE materials with considerable impurity phases 
(Ag2Te, copper telluride (Cu2Te and Cu2−xTe), and 
nickel telluride (NiTe)). Furthermore, it has been 
reported that the Ni-doping at Cu sites in AgCuSe, 
which introduces chemical and lattice disorder, could 
enhance electron mobility and reduce l. Motivated by 
this effect, the Ni-doping was also applied to optimize 
electrical and thermal parameters of AgCuTe, such as n 
and l [24]. As a result, the power factor (PF = S2σ) is 
significantly increased from 609 to 832 μW·m−1·K−2, and 
 is synergistically reduced from 0.52 to 0.43 W·m−1·K−1 
at 636 K in comparison with those of the reference 
sample, leading to a peak zT of 1.23 at 636 K and an 
average zT (zTavg) of 1.12 in the temperature range of 
523–623 K. This study provides a new approach to 
enhancing the TE properties by designing superior 
multiphase interfaces. 

2  Experimental procedures 

To synthesize the AgCuTe-based TE bulk materials 
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with multiphase compositions, we adopted a planetary 
ball milling method and a following spark plasma 
sintering (SPS) process. In detail, high-purity Ag 
(99.9%, Aladdin), Cu (99.9%, Aladdin), Te (99.9%, 
Aladdin), and Ni (99.9%, Aladdin) were weighted in a 
glovebox (Super, MIKROUNA, Germany) with the 
components of raw materials according to the molar 
ratio of Ag∶Cu∶Ni∶Te =[1 − 0.01(x + y)]∶(1 + 
0.01x)∶ (1 + 0.01y)∶ 1. For the convenience of 
description, the name of the samples is abbreviated as 
S-xy. For example, the synthesized sample with the 
molar ratio of Ag∶Cu∶Ni∶Te = 0.95∶1.02∶
0.03∶1 is represented by S-23. The weighted raw 
materials were sealed in stainless steel agate jars with 
an argon atmosphere. The agate jars were then rotated 
at a speed of 500 r·min−1 for 20 h in a planetary ball 
mill (WXQM-0.4L, Tencan Powder, China). After the 
ball milling process, the obtained powders were 
transferred into graphite molds with a diameter of 15 mm 
in the glovebox for the SPS process. At the 
beginning of the sintering process, the temperature 
rose rapidly from room temperature to 483 K with a 
speed of  100 K·min−1 and held at this temperature 
for 4 min. After that, the temperature increased further 
up to 673 K with a speed of 50 K·min−1 and held at 
this temperature for 3 min. Finally, the samples were 
cooled down to room temperature within 1 h, and the 
pressure was removed when the temperature dropped 
to 423 K. The obtained cylindrical alloy blocks with 
high relative densities were cut into suitable shapes for 
characterization of crystal structures, compositions, 
chemical states, and TE transport properties. 

The crystal structures and phase compositions of all 
samples were characterized by an X-ray diffractometer 
(D8 Advance, Bruker, Germany) with Kα radiation   
(λ = 1.54 Å) at 40 kV and 40 mA. A transmission 
electron microscope (TEM; Talos F200X, FEI, USA) 
with its own patented and integrated energy dispersive 
spectrometer (EDS; Super-X, FEI, USA) with four silicon 
drift detectors (SDDs) was used to analyze the 
microstructure and elemental distribution. Chemical 
states of Ag, Cu, Ni, and Te were tested on an X-ray 
photoelectron spectrometer (Escalab 250Xi, ThermoFisher, 
USA). The phase transition was determined by a 
differential scanning calorimeter (DSC 404 F3, 
NETZSCH, Germany). For the test of electrical 
properties, the sintered bulks were cut into rectangular 
bars with a size of ~3 mm  3 mm  12 mm. The σ and 
S were measured by commercial equipment (CTA-3, 

Cryoall, China) in a low-helium-pressure atmosphere. 
The Hall carrier mobility (μ) and n were evaluated by 
van der Pauw method on a commercial Hall effect test 
system (Model 8404, Lakeshore, USA) with a 
reversible magnetic field up to 1.5 T according to the 
equation:  n = 1/(eRH) and μ = σRH, where RH is the 
Hall coefficient, and e is the elementary charge. The  
was calculated by the equation:  = Dcpd, where D is 
the thermal diffusivity, d is the measured density, and 
cp is the specific heat capacity. The D was tested under 
a low-pressure argon atmosphere with a commercial 
device (LFA 467H, NETZSCH, Germany) with a 
sample size of ~0.8 mm in thickness and ~12.7 mm in 
diameter. In this study, cp was adopted by Dolung–Petit 
law approximation [17], and d was measured by 
Archimedes drainage method (Table S1 in the 
Electronic Supplementary Material (ESM)). TE 
property uncertainties are as follows: The uncertainty 
of σ and S is about 3%, and the uncertainty of D is 
about 6%. As a result, the uncertainty of the final zT is 
estimated to be about 15%. 

3  Results and discussion 

In general, interfacial thermal resistance (thermal 
boundary resistance) plays a significant role in 
blocking heat flow in solid materials, so that more 
phase interfaces would be beneficial for reducing l in 
the TE materials [25]. However, the phase interfaces 
also always obviously scatter the carriers to result in 
low μ because of the existence of a potential barrier 
induced by the depletion region, which depends on 
grain size, n, and dielectric constant [26]. Figure 1 
shows schematic diagrams of four types of carriers and 
phonons scattering at phase interfaces. The high 
potential barrier would lead to strong carrier scattering 
(Figs. 1(a) and 1(c)), and hence the phase interfaces 
with a negligible depletion region (a low potential 
barrier) (Figs. 1(b) and 1(d)) are in favor of good 
electrical properties. Under further consideration of 
phonon scattering, it is reasonable to conclude that 
more phase interfaces with a low potential barrier tend 
to achieve the decoupled carrier and phonon transport, 
resulting in better TE performance (Fig. 1(d)). 

To construct these multiple-phase interfaces, we 
synthesized the AgCuTe-based TE materials by 
manipulating the composition. Figure 2(a) shows 
powder X-ray diffraction (XRD) patterns of the  
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Fig. 1  Schematic illustration of phonons and carriers scattering at phase interface: (a) small interface with depletion regions to 
strongly scatter carriers but weakly scatter phonons, (b) small interface without depletion regions to weakly scatter both phonons 
and carriers, (c) large interface with depletion regions to strongly scatter both phonons and carriers, and (d) large interfaces 
without depletion regions to strongly scatter phonons but weakly scatter carriers. 

 

 
 

Fig. 2  (a) XRD patterns of as-prepared AgCuTe-based materials depending on Cu and Ni contents. XPS peaks of (b) Ag, 
(c) Cu, (d) Te, and (e) Ni. 

 

as-prepared AgCuTe-based materials as a function of 
Cu and Ni contents. In Fig. 2(a), we can conclude that 
the main diffraction peaks could be ascribed to hexagonal 

AgCuTe (PDF#78-0497, space group: P3m1); meanwhile, 
there exists an obvious impurity phase of monoclinic 
Ag2Te (PDF#81-1985, space group: P21/c) in the 
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pristine sample S-00. With the increase of the Cu 
content, two diffraction peaks at about 24.7° and 43.7° 
become more and more obvious, which could be 
matched with hexagonal Cu2Te (PDF#49-1411, space 
group: P3m1) and tetragonal Cu2−xTe (PDF#06-0661, 
space group: P4/nmm), respectively. This phenomenon 
indicates that the compounds of Ag2Te, Cu2Te, and 
Cu2−xTe are easily generated by regulating the molar 
ratio of Cu and Ag. After the Ni-doping, the diffraction 
peaks of hexagonal AgCuTe, monoclinic Ag2Te, 
hexagonal Cu2Te, and tetragonal Cu2−xTe also could be 
identified, though there are slight changes in the peak 
shape and shifts of the peak position, possibly due to 
the influence of Ni performed on the local crystal 
lattice (e.g., the changes in the cation vacancy and Ni 
substitution at cation cites). Because of the low 
addition of Ni (the molar ratio of Ni : (Ag + Cu) is no 
more than 2%), XRD may no longer be credible in 
detecting impurity phases of NiTe according to its 
sensitivity. To reveal chemical states of Ag, Cu, Ni, and 
Te, X-ray photoelectron spectroscopy (XPS) analysis 
was performed on the sample S-23. As shown in    
Fig. 2(b), the peaks of binding energy at about 368.4 
and 374.4 eV could be indexed to Ag 3d3/2 and Ag 3d5/2 
with a chemical valence of +1, respectively [27]. 
Similarly, the chemical valences of Cu and Te are +1 
and −2, respectively. The former is indicated by the 
peaks at about 932.7 eV (Cu 2p3/2) and 952.4 eV   
(Cu 2p1/2) (Fig. 2(c)) [28], while the latter is claimed 
by the peaks at about 572.6 eV (Te 3d5/2) and 583.0 eV 
(Te 3d3/2) (Fig. 2(d)) [27]. Besides, a weak peak at 
about 855.7 eV belonging to Ni 2p3/2 with +2 valence 
and its satellite peak at about 860.7 eV could be 
detected (Fig. 2(e)) [29], suggesting the existence of Ni. 

TEM observation and EDS analysis are further 
applied to characterize crystal structure, microstructure, 
and phase composition. Figure 3(a) shows an image of 
the sample S-23 collected by a high-angle annular 
dark-field scanning transmission electron microscope 
(HAADF-STEM; Talos F200X, FEI, USA), where the 
intensity of the image depends on the atomic number 
(Z) of the element. It is obvious that the elemental 
distribution is not uniform because the image shows 
clear black-and-white contrasts in different regions, 
suggesting that the sample is a composite; this is in 
line with the result of XRD. With the aid of elemental 
mappings detected by EDS (Figs. 3(b)–3(e)), the 
elemental distribution becomes clearer, and hence the 
phase composition could be deduced. In detail, the 

matrix is mainly composed of Ag, Cu, and Te, 
corresponding to the information of the AgCuTe 
compound. Besides, a rodlike region (marked by “1” in 
Fig. 3(e)) with a size of about ~50 nm  150 nm is very 
distinguishable, which mainly contains Te and Ni, 
indicating that this region should be NiTe. Meanwhile, 
Cu2Te and Cu2−xTe could also be confirmed by the 
regions (marked by “2” in Fig. 3(c)), where Cu and Te 
are enriched, but Ag and Ni are missing. Last but not 
least, some nano-precipitates with a diameter below 
~30 nm are most likely to form in the AgCuTe matrix. 
The black in the HAADF-STEM image due to smaller 
Z and deficiency of Ag and Te in elemental mappings 
demonstrate that they may be Cu- or Ni-enriched 
precipitates. Crystal structures of these compounds are 
characterized by the high-resolution TEM (HRTEM). 
In NiTe, a rhombohedral structure (space group: R 3 m) 
of NiTe could be identified (Figs. 3(f) and 3(g) and the 
inset of Fig. 3(g)). Moiré fringes could be observed 
around the phase interface between the NiTe nano- 
precipitates and the AgCuTe matrix (Fig. 3(f)), which 
usually means the overlap of these two phases [30]. In 
addition, hexagonal Cu2Te (Fig. 3(h) and the inset of 
Fig. 3(h)), monoclinic Ag2Te (Fig. 3(i) and the inset of 
Fig. 3(i)), tetragonal Cu2−xTe (Fig. S1 in the ESM), and 
their phase interfaces with the AgCuTe matrix are also 
confirmed. It is believed that these phase interfaces 
could act as phonon scattering centers to reduce l 
because the phase (grain) boundary could be considered 
as equivalent to dislocation (Figs. 3(j) and 3(k)) [31]. 
Besides, there are considerable stacking faults in the 
sample, as revealed by a linear feature in a fast Fourier 
transformation (FFT) pattern (Fig. 3(l)), which may 
also contribute to the enhanced phonon scattering [22]. 
In a word, there are multiple and complex phase 
compositions in the synthesized AgCuTe-based 
materials, which mainly consist of AgCuTe, Cu2Te, 
Cu2−xTe, Ag2Te, and NiTe. 

The phase transition is another parameter affecting 
the TE properties, which is measured by a differential 
scanning calorimetry (DSC) method. DSC curves 
exhibit that there are two main endothermic peaks near 
414 and 504 K, which could be ascribed to the phase 
transition of Ag2Te from monoclinic to cubic structures 
and AgCuTe from hexagonal to cubic phases, 
respectively (Fig. S2 in the ESM) [32,33]. The in-situ 
XRD patterns at variable temperatures also confirm the 
phase transition. As shown in Fig. S3 in the ESM, 
XRD patterns show an obvious variation from 500  
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Fig. 3  (a) HAADF-STEM image of sample S-23 and its elemental mappings: (b) Ag, (c) Cu, (d) Te, and (e) Ni. (f) Enlarged 
bright field (BF) image on the region marked by “f” in (a). (g) HRTEM image on the region marked by “g” in (f); the inset is its 
corresponding FFT pattern. HRTEM images focusing on phase interfaces between (h) Cu2Te and AgCuTe and (i) Ag2Te and 
AgCuTe; the insets are their corresponding FFT patterns. (j) HRTEM image and (k) its corresponding inverse FFT pattern. 
(l) HRTEM image on the region marked by “l” in (a); the inset is its corresponding FFT pattern. 

 

to 600 K, where the diffraction peaks collected at 600 K 
could be mainly ascribed to cubic AgCuTe and 
hexagonal Cu2Te, indicating the phase transition of 
AgCuTe from hexagonal to cubic phases (Fm 3 m). 
Furthermore, it seems that the Ni-doping induces 
ignorable effect on the phase transition temperature. 
Therefore, it is reasonable to conclude that n and phase 
interfaces would mainly dominate the TE properties. 

Figure 4 and Fig. S4 in the ESM show electrical 
properties of the as-prepared AgCuTe-based materials 
with different Cu and Ni contents. The σ of all samples 
decrease with the rise of the temperature below about 
500 K, suggesting electron transport behavior of 
degenerated semiconductors (Fig. 4(a) and Fig. S4(a) 
in the ESM). In contrast, σ displays negligible 
temperature dependence above 500 K. This could be 
explained by the phase transition, as exposed by a DSC 

measurement. Above 500 K, the samples are superionic 
conductors, and thus show weak temperature dependence 
in the electrical properties, which is also always 
observed in Refs. [16,17,34]. In addition, σ decreases 
in the whole temperature range as the Cu content 
increases and is further reduced by the Ni-doping. For 
example, σ at 636 K is ~3.67104 S·m−1 in the 
reference sample S-00, being depressed to ~2.81104 
S·m−1 in the sample S-50, and further reduced to 
~1.50104 S·m−1 in the sample S-23 by the Ni-doping. 
On the other hand, the changing trend of S as a 
function of the temperature and the contents of Cu and 
Ni are opposite to those of σ (Fig. 4(b) and Fig. S4(b) 
in the ESM), leading to the enhancement of S from 
~128 μV·K−1 in the sample S-00 to ~247 μV·K−1 in 
the sample S-23 at 636 K. According to Eqs. (1) and 
(2) [4], 
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where kB is the Boltzmann constant, h is the Planck 
constant, and m* is the density of the state effective 
mass; the decrease in σ and increase in S with the 
increasing contents of Cu and Ni are most likely to be 
introduced by the reduction of n. We obtained n and μ 
by Hall effect measurement at 300 K (Fig. 4(c)). As 
expected, n is suppressed by the Ni-doping from 
~4.501019 cm−3 in the sample S-50 to ~1.821019 cm−3 
in the sample S-14. This may be due to the depressed 
formation of the cationic vacancy [14] or the 
replacement of Ni ions with a higher chemical valence 
(+2) at Cu or Ag ion cites with a lower chemical 
valence (+1) as electron donors. Pisarenko plot based 
on a single parabolic band (SPB) model under acoustic 
phonon scattering provides the relation between n and S 
at 300 K (Section S1 in the ESM) [35], which 
demonstrates that m* of the Ni-doped samples is about 
0.24me (me is the electron effective mass), and it seems 
to have nothing to do with the content of Ni (Fig. S5 
in the ESM). Correspondingly, μ is increased from 
~112.5 cm2·V−1·s−1 (S-50) to ~210.3 cm2·V−1·s−1 (S-14) 
by the Ni-doping, indicating that the carrier scattering 
at the phase interfaces and the ionized impurity 
scattering induced by Ni substitutional doping in 

crystals are very weak. This may be due to the 
negligible depletion region at the phase interface 
induced by the similar chemical bonds in transition- 
metal tellurides [36]. Thanks to enhanced S in the 
whole temperature range, PF is accordingly enhanced 
by the addition of Cu and Ni (Fig. 4(d)). For instance, 
PF at 636 K in the sample S-00 is ~609 μW·m−1·K−2, 
which is increased to ~832 μW·m−1·K−2 in the sample 
S-23. 

As shown in Fig. 5(a) and Fig. S6(a) in the ESM,  
of all samples present a drop below 500 K but a rise 
above 500 K with the increasing temperature. Similar 
to the explanation in the electrical properties, the 
changing trend in  should be related to the phase 
transition. In other words, the origin of conducting heat 
in a low-temperature phase differs from that in a 
high-temperature superionic phase. Apart from the 
influence of the temperature, the increase of the Cu 
content contributes to slightly promote , while the 
Ni-doping acts as an opposite effect in the whole 
temperature range, so that  is reduced from     
~0.52 W·m−1·K−1 (S-00) to ~0.43 W·m−1·K−1 (S-23) at 
636 K. To analyze the phonon scattering mechanism, 
we calculated l by subtracting e (Fig. S6(b) in the 
E S M )  f r o m  ,  w h e r e   e  i s  e s t i ma t e d  b y 
Wiedemann–Franz law: e = LσT (the Lorentz number 
(L) is obtained by the SPB model with acoustic phonon 
scattering) [35]. Owing to the reduction of σ, e is  

 

 
 

Fig. 4  (a) σ and (b) S of as-prepared samples as a function of temperature. (c) n and μ of samples S-50, S-32, S-23, and S-14 at 
300 K. (d) PF of synthesized samples depending on temperature. 
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Fig. 5  (a) , (b) l, and (c) zT of as-prepared samples as a function of temperature. (d) zTavg of samples S-00 and S-23 in 
temperature range of 523–623 K and in contrast with those reported in Refs. [13,16,17,20,33,34] where TC and TH are the 
temperatures of cold and hot ends, respectively. 

 

obviously decreased in the whole temperature range by 
the addition of Cu and Ni. However, the increase of  
the Cu content boosts the transport of phonons, 
resulting in the enhancement of l in the sample S-50 
(~0.33 W·m−1·K−1 at 636 K) (Fig. 5(b)). This may be 
due to the formation of Cu2Te and Cu2−xTe impurity 
phases by the addition of Cu, which owns higher l 
than that of the AgCuTe matrix. Fortunately, the 
Ni-doping significantly decreases l to ~0.43 W·m−1·K−1 
at 636 K for the sample S-23, which may be attributed 
to the enhanced phonon scattering induced by the 
microstructures (e.g., dislocation and stacking faults) at 
the multiphase interfaces, as observed by the TEM 
characterization because mass and strain field 
fluctuations induced by the Ni substitutional doping 
are not enough to contribute the observed reduction of 
l based on Debye–Callaway model (Section S2 and 
Fig. S7 in the ESM). It is also worth noting that the 
changing trend in the low-temperature phases has 
higher temperature dependence than that in the 
high-temperature superionic phases. This is to be 
expected because the weak temperature dependence in 
l is always tested in the superionic conductors [10,17]. 

Because of the simultaneous enhancement in PF and 
reduction in , the great improvement in zT is achieved 

(Fig. 5(c)). Finally, a peak zT of ~1.23 at 636 K and 
zTavg of ~1.12 in the temperature range of 523–623 K 
are obtained in the sample S-23 (Fig. 5(d)), which have 
an about 50% enhancement in comparison with those 
of the sample S-00 and are both one of the best values 
among the AgCuTe-based TE materials [13,16,17, 
20,33,37]. 

4  Conclusions 

In summary, we successfully synthesized AgCuTe-based 
TE materials with multiphase compositions by the 
planetary ball milling technique and the following SPS 
process. The XRD and TEM results demonstrate that 
the as-prepared samples own the AgCuTe matrix and 
contain considerable and complex impurity phases 
mainly composed of Ag2Te, Cu2Te, Cu2−xTe, and NiTe. 
The generated multiphase interfaces synergistically 
optimize the transport of electrons and phonons with 
weak scattering for the former but strong scattering for 
the latter, so that PF is obviously increased from ~609 
to ~832 μW·m−1·K−2, and  is reduced from ~0.52 to 
~0.43 W·m−1·K−1 at 636 K, in contrast with those of 
pristine AgCuTe (S-00). This superior effect at the 
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phase interfaces is most likely to be contributed by the 
similar chemical bonds in these transition-metal 
tellurides. Finally, a peak zT of ~1.23 at 636 K and a 
zTavg of ~1.12 in the temperature range of 523–623 K 
are achieved in the sample S-23, which are both one of 
the best values among the AgCuTe-based TE materials. 
It is expected that this study would give potential 
instruction to construct a superior phase interface in 
other TE materials. 
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