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1.  Introduction

The intestinal barriers are semipermeable with the largest surface 
in body, absorbing nutrients and responding immune reactions, 
while limiting the transport of potentially harmful antigens and 
microorganisms[1-2]. Their integrity is critical to our survival, health 
and defense. However, damage occurs when the intestinal barriers are 
chronically exposed to alcohol, high fat, high sugar and other adverse 
environments due to poor diet[3-4]. The damaged intestinal barriers 
may trigger uncontrollable immune response and cannot remain the 
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intestinal microbiota homeostasis, leading to intestinal infl ammatory 
diseases, extraintestinal autoimmune diseases (such as rheumatoid 
arthritis and multiple sclerosis) and metabolic diseases (such as 
diabetes and obesity)[5]. Correspondingly, repairing intestinal wall, 
restoring mucosal thickness, reconstructing microbiota homeostasis 
and balancing inflammatory factors are necessary to restore the 
intestinal health. 

The recovery of intestinal integrity are mainly involved in the 
reconstruction of cytoskeleton, the migration, proliferation and 
differentiation of intestinal epithelial cells, as well as the effect of 
various cell growth factors[6-7]. Normally, about 1011 epithelial cells 
are lost from the intestinal cavity every day, which is supplemented 
by the proliferation and differentiation of intestinal stem cells. 
Besides, the intestinal microbiota that can also form additional mucus 
and immune layers to protect the intestinal mechanical barrier[8-9], with 
clearing up pathogens, pollutants and other harmful substances[8-10]. 
As to immune layer, intestinal microbiota mainly participates in 
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the secretion of antimicrobial peptides and stimulates the formation 
of interleukin (IL)-10, IL-17, IL-22, etc.[11]. With further research, 
the interactions between intestinal microbiota and host are found to 
benefit the maturation and maintenance of healthy mechanical barrier, 
the reconstruction of microbiota homeostasis and the development of 
immune system[12-13].

Both types of microorganisms i.e., pathogens and probiotics are 
present in the intestine. Among them, probiotics such as Lactobacillus 
rhamnosus 1.0320 and Lactobacillus paracasei HII01, can improve 
the in vivo defense system by increasing the number of beneficial 
microbes, inhibiting the growth of harmful ones, and modulating the 
diversity of microbial communities[14-15]. Meanwhile, Lactobacillus 
brevis LB062, L. brevis LB068 and Lactobacillus fermentum LF06  
produce antibacterial substances and acidic metabolites to prevent 
the adhesion and proliferation of pathogenic bacteria in the 
gastrointestinal tract[16]. In recent years, probiotics have become one 
worldwide research hotspot, being applied in the treatment of some 
diseases involving skin[17], oral cavity[18], gastrointestinal tract[19], 
vagina[20]. Whereas, oral probiotics are often seriously damaged by 
gastric acid and bile salt in the gastrointestinal tract. Continuous 
peristalsis of the gastrointestinal tract will also accelerate the 
removal of probiotics from the intestinal tract[21]. Some pathological 
microenvironments of the diseased intestine are enriched with reactive 
oxygen species (ROS) that can strongly oxidize the lipid and protein 
of probiotics, causing cell-wall damage and promoting programmed 
death of probiotics[22-23]. Moreover, the intestinal mucosal barrier is 
often destroyed by inflammation, leading to too low content of mucins 
to support the adhesion of probiotics[24-25]. And thus, oral probiotics 
are not easy to colonize in the mucus layer, and part of them may 

even enter into blood through the damaged intestinal barriers with 
increasing the risk of bacterial translocation[26-27]. Generally, the 
damaged intestinal barriers greatly impair the colonization and 
biological efficacy of oral probiotics. 

In order to overcome the adverse conditions mentioned above, 
some technologies about surface modification and encapsulation 
of probiotics are developed[28-29]. In which, encapsulation with 
nanomaterials has attracted more attention due to its advantages, such 
as stimulus responsibility, multimodal controlled release and high 
mechanical performance[30-31]. At present, most researches are focused 
on encapsulation technology to improve probiotics’ gastrointestinal 
tolerance, survival rate and bioactivity[32-33]. However, the influences 
of encapsulated probiotics on the gastrointestinal tract and their repair 
mechanisms are scarcely summarized and analyzed. Thereby, we 
focus on the preparation and in vivo roles of probiotics encapsulated 
by nanomaterials, especially introducing their repair function 
and steady-state regulation on intestinal four-layer barriers. This 
review might do favor to the efficient preparation and utilization of 
encapsulated probiotics to regulate intestinal barrier homeostasis and 
restore intestinal health.

2.  Encapsulation technology of probiotics based on 
nanomaterials

Nanomaterials have been widely used to modify and encapsulate 
probiotics and other bioactive substances[32]. These nanomaterials can 
be categorized into nanoparticles[34], nanofibers[35] and nanofilms[36] in 
view of shape (Fig. 1). Encapsulation technology of probiotics based 
on various nanomaterials are listed in Table 1.

Table 1
Current encapsulation technology of probiotics based on various nanomaterials.

Nanotechnology Strains Material 1 Material 2 Preparation methods Encapsulation mechanisms References

Metal 
nanoparticles

L. plantarum Fe3O4 Pectin Mechanical stirring Electrostatic attraction [38,155]

Pediococcus pentosaceus Li05 MgO Alginate-gelatin
Electrostatic 

microencapsulation unit
Hydrogen bond, electrostatic attraction, 

coordination compound
[156-157]

Polymer 
nanoparticles

L. plantarum

Cellulose fiber Cellulose nanofiber Mechanical stirring Electrostatic attraction [158]

Pectin Starch Mechanical stirring Hydrogen bond [159-160]

Grafting sodium 
polyacrylate from alginate

Alginate Mechanical stirring Calcium ions crosslink [161]

L. reuteri Carboxymethyl konjac 
glucomannan

Chitosan Mechanical stirring Hydrogen bond electrostatic attraction [162]

L. rhamnosus
Alginate Chitosan Mechanical stirring Electrostatic attraction [163]

Alginate - Mechanical stirring Calcium ions crosslink [75]

Liposome

L. rhamnosus Lecithin Chitosan- fish skin Mechanical stirring Electrostatic attraction [37,164]

E. coli Nissle 1917

Pt mPEG-DSPE Mechanical stirring - [55]

Dioleoylphosphatydic 
acid

Cholesterol Mechanical stirring Self-assembly [34]

Nanofiber

L. plantarum Polylactic acid - Coaxial electrospinning Hydrogen bond [165-166]

L. acidophilus Gum Arabic Polyvinyl alcohol Electrospinning Hydrogen bond [61]

L. rhamnosus, L. acidophilus, 
L. plantarum Gum Arabic Pullulan Electrospinning - [167]

Bifidobacterium animalis Bb12 Chitosan Poly (vinyl alcohol) Electrospinning Hydrogen bond [168-169]

Lactobacilli bifidobacteria Sodium alginate Corn starch Electrospinning Hydrogen bond [170-171]

Nano coating

L. acidophilus
Chitosan Sulfated β-glucan Mechanical stirring Electrostatic attraction [172-173]

Oligosaccharides Sodium alginate Mechanical stirring Schiff-base reaction [174]

E. coli Nissle 1917
Tannic acid FeCl3·6H2O Mechanical stirring Coordination compound [41,175]

Tannic acid FeCl3 and Eudragit L100 Co-culture Coordination compound [68,176]

L. rhamnosus Polydopamine Mechanical stirring Hydrogen bonding [40]

Biofilm 
encapsulation

L. plantarum Protein BslA Protein TasA Co-culture Self-assembly [73]

L. acidophilus, L. casei, L. rhamnosus Alginate - Mechanical stirring Calcium ions crosslink [74]

S. boulardii Alginate - Co-culture Calcium ions crosslink [177]
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2.1  Nanoparticles

To solve the problems associated with stability, safety, targeted 
adhesion and colonization, some nanoparticles, such as liposomes, 
iron and polysaccharide nanoparticles, have been used to encapsulate 
probiotics[37-39]. Meanwhile, the surfaces of nanoparticles are 
frequently modified by ligands or functional materials for targeted 
delivery, environmentally responsive release and high bioavailability 
of probiotics[40-43].

2.1.1  Metal nanoparticles

Because some complicated surface modifications are needed 
to improve the aqueous dispersion of metal nanoparticles, only a 
few have been developed to encapsulate probiotics. In which, iron 
oxide (Fe3O4) nanoparticles approved by the FDA have been tried to 
coat probiotics. To resist the dissolution of saliva and gastric juice, 
pectin is adsorbed on the surface of Fe3O4 nanoparticles to form iron-
pectin nanoparticles[38]. This encapsulation technology is simple, 
just mixing Fe3O4 nanoparticles with pectin solution that is prepared 

from orange peel and contains probiotics under continuous stir for  
60 min[38]. Consequently, the number of viable probiotics coated by 
iron oxide nanoparticles only decreased by 0.85 (lg (CFU/mL)) after 
60 days of storage[38].

2.1.2  Polysaccharide-based nanoparticles

Some natural or synthetic polymers have been applied in the 
encapsulation of probiotics. Chitosan (CS), a polycationic natural 
polysaccharide, is a landmark material for the preparation of polymer 
nanoparticles. Chitosan nanoparticles (CSNPs) are synthesized mainly 
through ionotropic gelation, emulsification solvent diffusion, and 
microemulsion, etc.[44]. Ionic gelation involves the interaction between 
ionic polymers and cations or anions to form cross-linked structures. 
For example, the amine groups of chitosan make it a cationic polymer 
that can interacts with anionic polymers[45]. Emulsification solvent 
diffusion method can obtain an oil-in-water emulsion after high 
pressure homogenization by mixing organic phase into a solution of 
stabilizer and chitosan. After that, a large amount of water dilutes 
the emulsion to diffuse the organic solvent, and the polymer is 
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precipitated with forming nanoparticles[46]. As to microemulsion 
method, glutaraldehyde (crosslinking agent) and chitosan in acetic 
acid solution are added to surfactants. The mixture is stirred overnight 
at 25 °C to complete the crosslinking between amine groups of 
glutaraldehyde and chitosan. This crosslinking in presence of 
surfactant leads to the formation of nanoparticles[47]. 

In comparison to bulk CS, CSNP-based delivery system has 
a greater specific surface to adhere on both cells and mucosa[48-50]. 
Additionally, CSNPs can improve the bioavailability and tolerance 
in harsh environment of probiotics[51-52]. For example, CSNP and 
alginate are used to encapsulate probiotic E. coli Nissle 1917 (EcN), 
and this encapsulated EcN can effectively adhere to HT-29 cells in 
the intestine with reducing the invasion of jejunum bacteria[53].

2.1.3  Nanoliposomes

Liposomes are mainly prepared by self-assembly of phospholipids 
and cholesterol, the preparation process is simple and efficient, and 
the targeted product has good biocompatibility. At present, there are 
two methods for encapsulating probiotics by nanoliposomes. The 
simplest method is to prepare liposomes by membrane dispersion 
method first, and then mix liposomes and bacteria suspension to 
obtain single-cell encapsulated probiotics[54]. 

Besides, the stability of nanoliposomes can be improved 
by adsorbing polysaccharides, proteins and metal nanoparticles 
onto the surface through electrostatic interactions. For instance,  
Pt nanoparticles can be embedded into mPEG-DSPE (i.e., polyethylene 
glycol derivatives of distearyl phosphatidylethanolamine) lipid 
nanomembrane to form platinum lipids for further encapsulating EcN 
under vortex, with obtaining encapsulated probiotic Pt-Lipid@EcN[55]. 
Due to platinum lipid protection, these encapsulated probiotics can 
resist the harsh environment in vivo after oral administration. 

2.2  Nanofibers 

Nanofibers have uniform morphology and composition, 
large surface area and high porosity, and they are often used to 
encapsulate various microorganisms, cells, genes and proteins[56]. 
Electrospinning technology is usually used to make nanofibers with 
materials such as polyvinyl alcohol, polyethylene oxide, cellulose 
and chitosan[57]. The encapsulation of probiotics within nanofibers 
can improve the stability of probiotic cells and realize site-specific 
delivery. For instance, ultrathin polyvinyl alcohol electrospun 
fibers for wrapping B. animalis Bb12 have an average diameter of  
150 nm, they can effectively maintain the viability of encapsulated 
probiotics after 40 days of storage at room temperature or 130 days 
under refrigeration[58]. Polyvinyl alcohol nanofibers encapsulating 
L. rhamnosus CRL1332 have an average diameter of 95 nm and can 
maintain bacterial activity after 360 days of deoxygenation storage 
at 4 °C[35]. In addition, nanofiber-immobilized L. rhamnosus can still 
inhibit urogenital pathogens. 

During nanofiber formation, excipients can effectively reduce 
the loss of L. paracasei activity[59]. When using Eudragit® L100 
(methacrylic acid, a film forming material used for oral tablets 
and capsules) and sodium alginate to encapsulate L. paracasei by 
electrospinning, the Eudragit® L100 electrospun fibers can provide 
a hydrophobic environment for L. paracasei, protecting them from 

oxygen to preserve their viability[60]. L. acidophilus wrapped in 
nanofibers made from gum arabic and polyvinyl alcohol remained 
63.99% of survival rate after lying in simulated gastrointestinal 
tract for 2 h, while all free ones were dead[61]. If L. rhamnosus were 
encapsulated in three-layer nanofibers, inner-layer constructed by 
hydrophilic amylopectin and outer-layer constructed by hydrophobic 
polylactic acid and glycolic acid, their survival rate was 72% after 
entering into the small intestine for 72 h[62].

2.3  Nanofilms

2.3.1  Nanofilm prepared by nanocoating technology 

Nanocoating is a single-cell encapsulation technology that not 
only protects probiotics, but also confers some usefully exogenous 
properties to probiotics. Nano-film is formed by molecular self-
assembly based on non-covalent interactions between molecules, 
such as hydrogen bonds[63]. Polydopamine biomimetic nanofilm is 
inspired by mussels[64]. Viscous proteins secreted by mussels have 
a large number of dopa which can be assembled into polydopamine 
on the surface of probiotics to form nanofilm[40]. Compared with free 
EcN, the survival rate of EcN encapsulated by polydopamine was 
increased by 6 times in the stomach, and the retention rate in the 
intestine was increased by more than 30 times[36]. Silk fibroin can 
also self-assemble on the surface of bacteria to form a complete and 
stable nanofilm through salting-out process[65]. This nanofilm not only 
protects probiotics from damage, but also maintains their ability to 
proliferate. Meanwhile, silk fibroin has anti-inflammatory activity, 
synergistically enhancing the therapeutic effects of probiotics on 
intestinal mucositis[65]. 

Polyphenols possessing multiple pyrocatechol groups are an ideal 
material to self-assemble into nanofilm, with good antibacterial and 
adhesion properties[66]. Metal-polyphenol supramolecular network, 
formed by coordination of metal and polyphenols, has been widely 
used in nanomedicine, catalysis, environment and other fields. In 
addition to dopa, the other natural polyphenols such as tannic acid (TA)  
and caffeic acid (CA) have been exploited to encapsulate probiotics[67]. 
At present, the most common nano-coating technology for probiotic 
encapsulation is based on crosslink between trivalent iron ions and 
TA[41]. First, iron ions and TA formed coordination bonds and self-
assembled on the surface of EcN to form the first dense mucosal 
adhesion layer TA-EcN; and then, calcium ions and Eudragit L100 
self-assembled on the surface of TA-EcN to form a second layer[68]. 
The Eudragit L100 layer protected EcN from gastric juice but broke 
down in the intestine (pH > 6); the TA layer improved the adhesion 
of probiotics onto the intestine barriers and subsidiarily exerted the 
therapeutic effect of tannic acid on colitis[68].

2.3.2  Nano-biofilm 

In nature, some bacteria surviving in the extreme harsh conditions 
usually form their own biofilms[69]. Probiotics such as Bacillus subtilis 
secrete extracellular polysaccharides, lipids and proteins during their 
growth and proliferation[70-71]. These sticky substrates are assembled 
into biofilms that not only significantly improve the tolerance of  
B. subtilis to gastric juice and bile acids[72], but also provide protection 
for other probiotics such as L. plantarum[73]. The exopolysaccharide of 
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B. subtilis bundles the colony, Bs1A protein forms a hydrophobic layer, 
and TasA protein self-assembles and anchors to the cell wall to form 
biofilm-encapsulated probiotics. The viable counts in simulated gastric 
and intestinal fluids were increased by 0.86 and 0.9 (lg (CFU/mL)),  
respectively[73]. If L. plantarum is embed in alginate, a crucial 
component of Pseudomonas’ biofilm, a polyanionic nano-shell will 
be formed to resist the gastrointestinal tract environment and the 
damage caused by cationic antibiotics[74-75]. Interestingly, probiotics 
will continue to proliferate within biofilms and then break out to 
become free cells[76]. Thereby, the limited life cycle of nano-biofilm 
should be taken into consideration in future applications[77]. Being 
similar to nano-coating technology, nano-biofilm encapsulation is 
also commonly served to parcel single cell.

3.  Selective colonization of probiotics encapsulated by 
nanomaterials

During preparation of encapsulated probiotics, their selective 
adhesion and colonization should be well considered according to the 
physicochemical properties of various nanomaterials. 

3.1  Selective colonization based on TA and metal ion complex

In order to increase the retention time of probiotics in the 
intestine, TA is widely utilized in encapsulation process[41]. TA is a 
secondary metabolite produced by microorganisms and plants, with a 
molecular weight around 500–3 000 Da. Because catechol groups of 
TA can form hydrogen bonds, covalent bonds and/or π-π interactions 
with different substrates, TA exhibits strong adhesion properties[78]. 
For instance, multiple TA monomers react with Ca2+ for forming a 
nanofilm-like assembly on the surface of EcN to adhere to mucin[79].

When TA-metal ion complex and Eudragit L100 (an enteric 
polymer) were used to encapsulate EcN in turn for forming layer-by-
layer LbL encapsulated EcN, which that can enhance tolerance to harsh 
environments in the upper digestive tract as well as special adhesion to 
the intestinal mucosa, and even realize colonization of probiotics[68]. 

Additionally, the inner assembled TA nanofilm can remove ROS in 
the pathological environment of inflammatory bowel diseases (IBD) and 
further improve the survival rate of probiotics[80]. TA can also be used 
to self-assemble with poloxamer 188 (F68, an intravenous excipient), 
forming a TA@F68 nanoshell to encapsulate EcN (Fig. 2A)[80]. 
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3.2  Selective colonization based on polysaccharides

Chitosan and sodium alginate are biodegradable polysaccharides 
with good biocompatibility and unique adhesion properties[81]. In 
which, chitosan is positively charged and interacts with intestinal 
mucin via electrostatic attraction, hydrogen bond and hydrophobic 
effect[82]; alginate is an anionic polymer with abundant carboxyl 
groups to adhere to mucosa via hydrogen bonds[83]. During LbL 
encapsulation, cationic polysaccharide-chitosan (CHI) can be 
designed as inner nanofilm for Bacillus coagulans (BC), with anionic 
polysaccharide-alginate (ALG) acting as outer layer. In order to 
protect probiotics from gastrointestinal tract insults and facilitate 
both muco-adhesion and direct growth on intestinal surface, three-
layer nanoshells (CHI/ALG)3 are designed to obtain (CHI/ALG)-LbL 
BC (Fig. 2B)[84]. After intake of three-layer encapsulated BC, LbL 
degradation will appear in the intestine. With the degradation of outer 
sodium alginate layer, the chitosan layer is exposed and exerts its 
adhesion property to achieve sustainable colonization of BC. 

Glycoproteins in intestinal mucus contain large amounts of 
cysteine, which is also abundant in the outer membrane of Gram-
negative bacteria and cellular protein layer[85-87]. Thiopolymers 

can form disulfide bonds with cysteine, and thus they can serve 

as intermediate junctions between probiotics and the intestinal 

mucosa[88-89]. Moreover, sulfated chitosan can increase viscosity by 

100 times than unmodified chitosan[90]; thiochitosan outer nanofilm 

can also significantly enhance the adhesion and colonization of 

Lactobacillus evansi DPC16 on the surface of colon[48]. Thiooxidized 

Konjac glucomannan (sOKGM), i.e., oxidized Konjac glucomannan 

(OKGM) conjugated by cysteine via carboxyl groups, can also protect 

Bifidobacteria from gastric acids and provide good adhesion and 

colonization in the colon (Fig. 2B)[91].

3.3  Selective colonization based on amino acids and their 
derivatives

Amino acid-based modification has recently been regarded as 
one of the most powerful methods for gut microbes[92-93]. D-amino 
acid is an important element of the bacterial cell walls and can be 
developed into fluorescent probe[94-96]. D-amino acid labeling probe 
has a good tolerance and can efficiently and rapidly label bacteria, 
which is useful to study intestinal microflora[97]. The unnatural 
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D-amino acids can also be used for precise bacterium detection 
and therapy[98-99]. Probiotics to be delivered were modified with 
dibenzocyclooctyne (DBCO) through amide bonds (Fig. 3A). After 
oral administration of DBCO-modified probiotics, a bio-orthogonal 
reaction occurred between probiotics and intestinal residents of mice, 
to significantly improve the colonization efficiency of probiotics[42]. 
Similarly, in colitis mice induced by dextran sulfate sodium (DSS),  
bio-orthogonally mediated C. buturicum can be effectively colonized.

Due to the specific interactions between biotin and streptavidin, 
they can form a synthetic adhesin widely used in biological coupling 
reactions[100]. N-hydroxysuccinimide ester can simultaneously connect 
biotin and amines on the surface of bacteria, forming biotin-modified 
bacteria. And then streptavidin specially binds biotin-modified 
Lactobacillus and the monoclonal antibody against intracellular 
adhesion molecule (aICAM-1), this complex subsequently bonds 
the ICAM-1 receptor secreted on the surface by Caco-2 cells  
(Fig. 3B). This method based on specific binding of functional groups 
can significantly improve the colonization ratio of probiotics in  
the intestine[43].

3.4  Selective colonization based on bacterial biofilms

The biof i lm consis ts  of  a  mixture  of  var ious  type of 
polysaccharides and proteins, it has been exploited to transport 
drugs, small molecules and macromolecules to intestinal microvilli. 
Biofilm can serve as a binder to attach bacteria onto the surface 
of the intestinal wall as well as prevent bacteria from clearance 
by flowing liquid[101-102]. Biofilm can also play a role in targeted 
release of probiotics. For example, β-glucan in yeast membrane 
can be recognized and swallowed by micro-folded cells. Therefore, 
encapsulated EcN by yeast membrane through physical extrusion 
not only improves their tolerance to the harsh gastrointestinal 
environments, but also enables themselves to enter into the Pellet 
with improving immune response and maintaining intestinal 
homeostasis[103]. Besides, the bioavailability of oral B. subtilis 
encapsulated by self-biomembrane was 125 times higher than that 
of free B. subtilis, and the intestinal colonization rate was 17 times 
higher in living pigs[72]. 

A novel bacterial carrier i.e., bacterial boat for oral administration 
was prepared by encapsulating Lactobacillus reuteri via in-situ 
and ex-situ methods with mesoporous nanoparticles (Fig. 3C).  
The glycoprotein secreted by L. reuteri are specially absorbed by 
the intestinal microvilli to prolong colonization span of probiotics in  
the intestine[104].

4.  Environment-responsive release of encapsulated 
probiotics 

4.1  Probiotic release based on pH-responsive

Since pH value of the gastrointestinal tract changes significantly, 

the degradation of out-layer polymers encapsulating probiotics can 

be designed to trigger by pH change[105]. This out-layer degradation 

mainly relies on chemical reactivity of the side chains and functional 

groups in the main chain of the polymers, and swelling-deswelling 

can be controlled by electrostatic repulsion (i.e., ionic strength) to 

achieve pH response and probiotic release.

Alginate is a linear polysaccharide composed of (1-4)-β-D-
mannuronic acid (M) and (1-4)-α-L-guluronic (G) residues. Under the 
action of divalent cations such as calcium chloride, alginate can be 
assembled into pH-sensitive cross-linked complex which is beneficial to 
slowing down the infiltration of gastric acid and increasing the release 
of probiotics in the intestine[106-107]. However, the instability of alginate 
greatly limits its application. For instance, alginates are sensitive to 
acidic media, such as gastric juice[108], leading to unexpected release of 
encapsulated probiotics[109]. The other polymers are introduced to solve 
this problem via coating alginate gel, such as chitosan[110]. Compared 
with alginate alone, chitosan-coated alginate increased the survival rate 
of L. plantarum in simulated gastric fluid (pH 1.5) by 0.5–2 logs[111], at 
the cost of decrease of release rate in the small intestine[112]. 

In order to realize the targeted release of encapsulated Lactobacilli 
in intestinal tract, a novel intestinal targeted Ca-alginate (CA) carrier 
have been successfully developed. The carrier possessing a core-
shell structure, i.e., an inner core of CA gel encapsulating bacteria 
and an outer shell composited of calcified alginate-protamine (CAP), 
can protect of encapsulated probiotics in the stomach and release 
probiotics in the small intestine in a pH-responsive model[108]. As a 
cationic polypeptide, protamine interacts with CA network molecules 
via electrostatic pull, with enhancing the stability of alginate. Milk 
proteins can also combine alginate with synthesizing a denser 
hydrogel to reduce the permeability of encapsulated probiotics[113], 
and then the survival rate of L. acidophilus in simulated gastric fluid 
is increased by 40%[114]. 

4.2  Probiotic release based on specific enzymatic hydrolysis

The colonic microbiota produce a variety of enzymes to ferment 
carbohydrates in the chyme, such as β-D-galactosidase, β-xylosidase, 
β-D-glucosidase and α-L-arabinosidase[115], which are responsible for 
the degradation of polysaccharides in the colon to meet the energy 
needs of bacterial survival and propagation[116].

Natural polysaccharides such as chitosan have good tolerance 
to enzymes in the stomach and small intestine, but they can be 
specifically hydrolyzed by β-glucosidase produced by colonic 
microbes. In addition, positively charged chitosan can interact 
electrostatically with negatively charged gastrointestinal mucosal 
surfaces and is considered to be an effective mucosal adhesive[117]. 
Therefore, chitosan is often used as a colon-specific enzymatic 
hydrolysis material to realize targeted release of probiotics[118]. 
However, the encapsulation efficiency is poor when chitosan is used 
alone, so it is mainly used as shell[119]. Pectin has also become a 
promising biopolymer that can be used to construct microbe triggered 
colon-specific carriers. Pectin is not sensitive to upper digestive 
enzymes, but is easily degraded by colon enzymes when it reaches 
the colon. Similar to alginate, when the pectin solution is squeezed 
into a medium containing concentrated calcium salt, a gel can be 
formed also. Furthermore, pectin-based carriers can reduce the release 
of encapsulated probiotics in the gastrointestinal tract by secondary 
crosslinking, achieving targeted colonic release[120-122].

4.3  Probiotic release based on specific intestinal metabolites

Hyaluronic acid (HA) has abundant functional groups, including 
carboxyl and hydroxyl groups, which can be used for chemical 
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modification. Its repeated disaccharide units and high viscosity 
are conducive to its self-crosslinking to form supramolecular 
hydrogels[123]. The hydrogel has redox response characteristics and 
degrades when encountering hydrogen sulfide excreted by intestinal 
pathogens. Therefore, thiolated self-crosslinking hyaluronic acids 
can be used to prepare novel intestinal-targeted release hydrogels[124]. 
For instance, the HA−SH self-cross-linking hydrogel was used to 
encapsulate L. rhamnosus[125]. 

5.  Repair mechanisms of intestinal four-layer barriers by 
probiotics 

5.1  Repair of mechanical barrier 

For enteric pathogens, adhesion to the intestinal epithelial cells 
is a critical step during infection. Pathogens invade the intestinal 
mucosal barrier by phagocytizing antigen-presenting cells (dendritic 
cells, microfolded cells), direct invasion of intestinal epithelium, or 
the paracellular pathway after disrupting cellular connections between 
epithelial cells. Fortunately, Lactobacillus can inhibit the adhesion 
of pathogens, thereby protecting the integrity of cell junctions and 
mucosal barriers[126]. L. plantarum ZLP001 significantly inhibited 
the increase of intestinal permeability induced by enterotoxigenic  
E. coli (ETEC) and enhanced the resistance of intestinal epithelium 
by maintaining enough tight junction proteins[127].

Lactobacillus and Bifidobacterium can maintain functions of the 
intestinal epithelial barrier by regulating the permeability of between 
intestinal epithelial cells and the expression of zonula occludens-1 
(ZO-1). Moreover, L. casei is found to increase the expression of 
TLR2 and p-Akt protein, indicating preventing cytokine-induced 
dysfunction of epithelial barrier through the PI3K/Akt signaling 
pathway[128]. 

In addition, probiotics can promote the secretion of peptides 
produced by intestinal goblet cells, improve intestinal mucosal repair, 
and thus contribute to maintaining the integrity of mucus barrier. 
For instance, Bifidobacterium dentatum can secrete acetate and other 
products to increase the level of MUC2 mucin in T84 cells, and 
secrete aminobutyric acid (GABA) to stimulate autophagy mediating 
calcium signal and MUC2 release. L. rhamnosus can increase the 
expression of Muc2 gene in mouse colon, and the thickness of 
mucus layer are increased in an EGF receptor dependent manner[129]. 
Besides, L. plantarum CCFM734 and CCFMI 237 can prevent mucin 
degradation by up regulating the transcription of sulfotransferase 
encoded by GAL3ST-2[130].

5.2  Repair of bio-chemical barriers

The chemical barrier molecules secreted by small intestinal cells, 

such as bacteriostins, antimicrobial peptides (AMP), regenerative 

islet-derived 3 (Reg3) protein family and lysozyme, play a crucial role 

in the spatial separation of intestinal bacteria and intestinal epithelial 

cells. EcN induces the secretion of human β-defensin 2 by mediating 

nuclear factor-κB (NF-κB) and activator protein-1-dependent 

pathways[131-132]. In vivo, EcN protects intestinal cells from infection 

by Salmonella and Candida albicans[133]. In vitro, EcN has been found 

to inhibit the invasion of Salmonella, Yersinia enterocolitica, Shigella 
flexneri, Listeria pneumophila and Listeria monocytogenes[134-135].

Lactic acid bacteria, such as L. acidophilus, L. rhamnosus and 
B. coagulans, can protect the host against pathogens by producing 
bacteriocin, regulating immune and nonimmune defense, balancing 
intestinal microbiota, etc. More importantly, these probiotics 
can compete with pathogens for nutrients and occupation sites in 
the intestinal epithelium, thereby inhibiting pathogen adhesion 
and alleviating bacterial enteritis[136]. Lactic acid produced by 
lactic acid bacteria can inhibit the growth of some pathogenic 
microorganisms[137], such as Helicobacter pylori, Shigella fradiae, 
and E. coli by reducing environmental pH[138-141]. L. plantarum 
Bar10 can effectively inhibit the adhesion of S. choleraesuis and  
E. coli to Caco-2 cells[126]. Similarly, L. paracasei inhibits pathogenic 
Salmonella Enteritidis and Streptococcus to adhere Caco-2 cells  
(Fig. 4); furthermore, pre-incubation L. paracasei with Caco-2 cells 
before addition of Salmonella can further greatly reduce pathogens’ 
adhesion efficiency[142]. 

It is well known that Salmonella typhimurium is a typical 
intestinal pathogen to produce H2S, easily triggering bacterial enteritis. 
Fortunately, L. rhamnosus encapsulated by hydrogel specifically 
attaching the intestinal barriers can slow down S. typhimurium invasion. 
Detailly, when encapsulated probiotics are exposed to H2S emitted by 
intestinal pathogens, disulfide bonds in the skeleton of outer hydrogel 
layer despondingly break down as soon as possible, with releasing 
probiotics to compete with pathogen S. typhimurium for binding sites[125]. 

5.3  Repair of immune barrier

Preventing the excessive production of proinflammatory factors 
and increasing the secretion of anti-inflammatory factors, are the 
main ways of probiotics to alleviate intestinal inflammation. When 
probiotics were used in septic mice induced by cecal ligation and 
perforation (CLP), it was found that probiotics could inhibit the 
polarization to M1 macrophages but promote the polarization to M2, 
so as to inhibit inflammation and control immune balance[143-144]. 

It  is found that genomic DNA of L. plantarum  affects 
lipopolysaccharide (LPS)-induced mitogen-activated protein 
kinase (MAPK) activation, NF-κB activation, TNF-α expression, 
interleukin-1 receptor-associated kinase M, and pattern recognition 
receptor. Stimulation of THP-1 cells using L. plantarum g-DNA 
revealed that the phosphorylation of MAPKs and NF-κB was 
significantly inhibited, and that the LPS-induced tumor necrosis factor 
(TNF)-α was also inhibited [145]. 

With regulating the inflammatory response induced by adherent-
invasive E. coli (AIEC), Lactobacillus was found to reduce the 
secretion of the pro-inflammatory factor TNF-α but increase the 
secretion of the anti-inflammatory factor IL-10 by macrophages[146]. 
Lactococcus showed good anti-inflammatory effects in macrophage 
RAW264.7 cells and DSS-induced IBD mice[147]. In detailed, L. lactis 
ML2018 can reduce the production of NO in macrophage cells after 
stimulated by LPS; while oral administration of L. lactis ML2018 
significantly inhibits the up-regulation of IL-1β, IL-6 and TNF-α of 
mice after injection of DSS[148]. 

6.  Development trends of encapsulated probiotics

Oral administration is the most convenient and popular style 
to probiotics involved therapy. Some inorganic nanoparticles, such 
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as silver nanoparticles and zinc oxide nanoparticles, can regulate 
IBD microbiota to achieve well therapeutic effects[149]. However, 
long-term exposure to silver nanoparticles may lead to cell damage 
and inflammation through oxidative stress. Therefore, the other 
nanomaterials with good bio-compatibility and safety are screened 
out, such as various protein-based biopolymers, polysaccharides, 
lipids and synthetic polymers[150-151]. In addition, pH-sensitive 
polymers such as hydroxypropyl methyl cellulose phthalate, 
acrylate polymers, and cellulose acetate phthalate are widely used 
in formulations of enteric nanofilm, to minimize the contact of 

probiotics with gastric acid and reduce the loss of probiotic activity in 
the stomach[152]. 

The spore membrane might be developed into multifunctional 
coat nanoparticle (CN) via mechanical force, becoming a new 
material for the delivery of oral probiotics. Due to its high tolerance, 
excellent biocompatibility and natural affinity to some microbes, CN 
has been attempted to coat B. subtilis and Bacillus licheniformis[77]. 
Although CN can significantly increase survival, competitive 
colonization and proliferation of CN-coated probiotics (CN@BC) 
in the intestine, the germination efficiency of spores cannot be well 
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controlled and spore germination may disrupt ion homeostasis in 
the intestine[153-154]. It is urgent to understand the physicochemical 
properties, safety, bioavailability and efficacy of nanomaterials to 
ensure safe application of encapsulated probiotics[150].

At  present ,  the preparat ion technologies  of  probiot ic 
nanomaterials are more and more diversified, realizing the single-
cell encapsulation and being potential to innovate probiotic delivery. 
Compared with bulk encapsulation, single-cell encapsulation can 
improve in vivo resistance, bioavailability and mucoadhesion, even 
potentially prevent and treat diseases at cellular level. Besides, single-
cell encapsulation uses a small amount of initial material to produce 
bio-friendly nanofilm on probiotic cell through different biological 
and/or chemical engineering designs, without the need for acid-
resistant microcapsules or complex processes.

7.  Conclusion

The popular encapsulation technology of probiotics with 
nanomaterials as well as the excellent properties of encapsulated 
probiotics are summarized and systematically analyzed. Furthermore, 
repair mechanisms of the four-layer intestinal barriers are elucidated 
from repairing intestinal physical barrier, regulating chemical 
barrier, balancing biological barrier to enhancing immunity. With the 
advancement of nanotechnology in synthetic tools and biochemical 
characterization, encapsulation of probiotics will achieve greater 
development, benefiting the food and pharmaceutical industries in 
preparation and utilization of multifunctional encapsulated probiotics.
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