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ABSTRACT: The utilization of Lactobacillus plantarum (LP) in chili sauce production is well-known for its capacity 

to enhance product quality and sensory attributes. However, there is still limited knowledge regarding the taste-active 

metabolites in the sauce. To bridge this gap, our study employed metabolomics and web-based computational tools to 

investigate the dynamic changes of taste-active metabolites during chili sauce fermentation. By leveraging the 

advantages of the feature-based molecular network (FBMN), we conducted a rapid annotation of metabolites, 

successfully identifying 205 metabolites, a considerable portion of which were previously unreported. Through the 

utilization of the VirtualTaste tool, we identified dihydrosphingosine, lactic acid, isoleucine, phytosphingosine, and 

gluconic acid as potential taste indicators for quality control. Pathway enrichment analysis further supported their 

primary involvement in key biochemical pathways, including amino acid tRNA biosynthesis, phenylalanine, tyrosine, 

tryptophan biosynthesis, and sphingolipid metabolism. This investigation provides valuable insights into the 

underlying mechanisms contributing to the distinctive flavor profile of chili sauce. 
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1. Introduction

Chili sauce, commonly referred to as hot sauce, is a popular condiment admired for its appealing color 

and spicy taste[1]. However, traditional production methods involving diverse naturally occurring 

microorganisms pose challenges in maintaining consistent product quality[2]. Lactobacillus plantarum (LP), a 

widely distributed species of lactic acid bacteria (LAB), has gained significant attention in the food industry 

due to its versatile functional properties[3]. These properties include enhanced flavor, probiotic activity, 

antimicrobial effects, and reduction of undesirable components[3-4]. Therefore, utilizing a single LP strain in 

the production of chili sauce ensures consistent product quality and excellent sensory attributes, while 

addressing the aforementioned concerns. 

The taste attributes of food components, including sweetness, bitterness, acidity, umami, and saltiness, 

play a significant role in shaping consumer preferences and purchasing behavior[5]. Sweetness enhances the 
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overall enjoyment of food, while sourness adds a tangy taste that enhances the flavor of chili sauce. Excessive 

acidity can overpower other flavors, resulting in a harsh sharpness on the palate, and bitterness can negatively 

impact food acceptance, despite its protective function against toxic substances in humans. Given the 

complexity of chili sauce, evaluating the taste properties of these metabolites solely through experimental 

methods is labor-intensive and costly in terms of time and resources. Conversely, the integration of web-based 

computing tools and food science has introduced innovative methodologies in flavor research that facilitate 

the exploration of metabolite structural characteristics and enable early detection of potential key flavor 

indicators in conjunction with omics technologies. Non-targeted metabolomics techniques, particularly 

ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry 

(UHPLC-Q-TOF-MS), have recently gained significant popularity for identifying essential food 

metabolites[6-9]. Metabolomics studies typically rely on in-house or public databases for metabolite 

annotation. It is essential, however, to recognize the inherent limitations of this approach. These limitations 

include the database's inability to encompass all potential metabolites and the risk of incorrect matches or 

search failures[10]. The primary challenge, therefore, is to achieve comprehensive coverage and accurate 

identification of metabolites within the given analytical framework.. 

The molecular network (MN) is a crucial component of the Global Molecular Network for the Natural 

Products Society (GNPS) platform. It utilizes MS1 data to visualize and explore the relationships between 

metabolites[11-12]. An upgraded version of MN is Feature-Based Molecular Networks (FBMN), which 

incorporates retention time and MS2 data to investigate unidentified constituents. FBMN provides a more 

comprehensive understanding of metabolite structures and relationships, making it easier to identify specific 

substructures or chemical modifications[13-16]. Additionally, VirtualTaste, a web-based platform, employs 

machine learning algorithms to predict the three fundamental taste sensations of compounds—sweet, bitter, 

and sour[17]. This data-driven methodology holds considerable promise as a rapid tool for analyzing the flavor 

profile of food and beverage products. 

This study employed an untargeted metabolomics approach based on ultra-high-performance liquid 

chromatography coupled with UHPLC-Q-TOF in conjunction with the FBMN tool to identify the non-volatile 

metabolites present in chili sauce during different fermentation durations (0-day, 3-day, 5-day). Subsequently, 

the taste activity of the identified key metabolites was evaluated using the machine learning-based 

VirtualTaste tool. This integrated approach, combining metabolomics and computational tools, offers several 

advantages, including improved efficiency in screening taste-active metabolites and facilitating a systematic 

and comparative analysis of the metabolites involved in the fermentation process. The findings of this 

investigation provide valuable insights and robust data support for ensuring the quality control of chili sauce 

processing. 

2. Materials and methods 

2.1. Materials and reagents 
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The HPLC-grade formic acid was procured from Kermel Chemical Reagent Co., Ltd. (Tianjin, China), 

while the ammonium acetate was obtained from Krohne Chemical Reagent Co., Ltd. (Chengdu, China). 

LCMS-grade acetonitrile was purchased from FTSCI Corporation (Wuhan, China), and methanol used for 

extraction was provided by Chron Chemical Co., Ltd. (Chengdu, China). Ultrapure water with a resistivity of 

18.2 MΩ⋅cm was obtained using a Milli-Q system (Millipore, Bedford, USA). 

2.2. Fermentation and extraction of chili peppers 

Chili peppers (Capsicum annuum var.) were procured from supermarkets in Chengdu, China. The LP B5 

strain (NCBI accession number: OP782666) was activated by incubating it in a sterile MRS liquid medium at 

37 ℃ for 8 h. Subsequently, the medium components were eliminated using sterile saline. The concentration 

of the seed solution was adjusted to OD600 nm = 0.8. The pepper samples were washed, crushed, and subjected 

to sterilization at 60 ℃ for 30 min. After cooling to room temperature, 3.0% NaCl was added, and the mixture 

was homogenized. The homogenized pepper samples were divided into 15 portions and transferred to sterile 

Petri dishes, with each dish containing a 25 g sample. Inoculation was performed by adding 1.5 mL of the LP 

B5 strain solution to each Petri dish. The samples were incubated in a dedicated incubator at a constant 

temperature of 35 ℃ for a duration of 5 days. Freeze-drying was carried out on samples collected at 0, 3, and 

5 days of fermentation (n = 5) to obtain freeze-dried samples. 

The freeze-dried samples were subjected to extraction using a modified version of a previously described 

method[18]. To initiate the extraction process, 1.0 g of each sample was placed in a 15 mL centrifuge tube, 

followed by the addition of 10 mL of methanol. The resulting mixture was vortexed for 1 min and subjected to 

ultrasonication at room temperature for 20 min. Subsequently, the extract was filtered through a 0.22 μm 

membrane to facilitate further UHPLC-Q-TOF analysis. 

2.3. UHPLC-Q-TOFmethod 

The X500 UHPLC-Q-TOF system (SCIEX Co., Framingham, MA, USA) equipped with an ESI source was 

utilized in this study.  Chromatographic separation was carried out on an HSS T3 C18 column(10 cm × 2.1 

mm, 1.8 μm) (Waters, Shanghai, China).The mobile phase A consisted of acetonitrile, while mobile phase B 

consisted of ultrapure water with 0.1% ammonium acetate. The injection volume was set to 4 μL, and the flow 

rate was 250 μL/min. The column temperature was maintained at 40 ℃. The gradient elution program was as 

follows: (0−2) min 5% A, (2−13) min from 5% to 100% A, (13−16) min 100% A, followed by a return to 5% 

A in (16−16.5) min, and finally (16.5−20) min 5% A. Samples were analyzed in both positive and negative 

ionization modes using MS precursor ion scanning from 70 Da to 600 Da and MS/MS product ion scanning 

from 50 Da to 600 Da. The information dependent acquisition (IDA) function was utilized for data acquisition. 

The ion source was TurboSpray with parameter settings as follows: ion source gas 1 (GS1), 55 psi; ion 

source gas 2 (GS2), 55 psi; curtain gas (CUR), 35 psi; temperature, 400 ℃; ionspray voltage, +5 500 V for 

positive and −4 500 V for negative ionization modes; declustering potential (DP), 80 V; collision energy (CE), 

10 eV. Dynamic background subtraction (DBS) to exclude multiply charged ions and isotopes were invoked 

during the data acquisition. In order to monitor the stability of the system and ensure the accuracy of the data 



J.Q. Wang et al. / Food Science and Human Wellness 14 (2025) 

 

acquired by the developed method, the calibration delivery system (CDS, APCI calibration solution) was run 

every 5 samples injections. 

2.4. Data processing and statistical analysis 

The massdata files were initially imported into MS-DIAL 4.60 softwarefor metabolite name and species 

annotation in the 6 sample sets, consisting of three sets each for positive and negative ion modes[19]. The 

resulting dataset was then subjected to principal component analysis (PCA) using unity variance scale, partial 

least squares discriminant analysis (PLS-DA), and variable importance in projection (VIP) scoring using 

SIMCA 14.1. Differential metabolites were screened using ANOVA (VIP > 1.0, P < 0.05) in SPSS25. Heat 

map visualization analysis was performed using OmicStudio tools (https://www.omicstudio.cn/tool). 

Metabolic pathway enrichment analysis was conducted using MetaboAnalyst 5.0 

(https://www.metaboanalyst.ca/) with Arabidopsis thaliana as the background in order to identify functional 

annotations and perform enrichment analysis on chili sauce at different fermentation times. Additionally, the 

VirtualTaste tool (https://insilico-cyp.charite.de/VirtualTaste/) was employed to identify potential flavor 

markers for quality control purposes. 

2.5. FBMN analysis 

The clustering process in GNPS involves the following steps: 1) FBMN analysis: The metabolomics data 

obtained from UHPLC-Q-TOF are processed using msdial 4.60 to extract features that represent individual 

metabolites. These features include m/z values, retention times, and intensities. 2) Spectral similarity scoring: 

The mass spectra of the features are compared using cosine similarity scoring algorithms. Features with 

similar spectra, indicating potential structural similarity, receive higher similarity scores. 3) Network 

construction: Based on the similarity scores, the features are connected to form clusters in a network 

representation. Each cluster represents a group of metabolites that share similar spectral characteristics.The 

precursor ion mass tolerance and the MS2 fragment ion were set to 0.01 Da. Edges were formed if the 

minimum cosine score of 0.7 was exceeded with > 6 matched mass peaks. 4) Visualization and analysis: The 

network of clustered metabolites is visualized in GNPS, allowing users to explore the relationships between 

metabolites. The network can be further analyzed to identify substructures, chemical families, or related 

biosynthetic pathways. 

Spectra in the network were searched across GNPS spectral databases. Substructure annotation was 

performed using MS2LDA interface in GNPS. The resulting data were then imported into Cytoscape 3.9.1 for 

visualization analysis[20]. The task results for the FBMN analysis can be accessed at 

https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=b0ebf8ee8b3248669480ee7179fc635e&view=network_co

mponents, and 

https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=4abbac2684a748948688b5de5c863ee0&view=network_c

omponents. 

3. Results 
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3.1. Global FBMN analysis 

Untargeted metabolomics was employed in this study to analyze chili sauce at different fermentation 

durations (0, 3, and 5 days). Chromatographic separation was achieved within 20 min (Fig. S1), and the MS2 

data were analyzed using the FBMN tool. The FBMN analysis enabled the visualization of metabolite families 

based on their similarity in MS2 fragmentation patterns (Fig. 1). A total of 13517 positive precursor ions([M + 

H]+, [M + 2H]2+, [M + Na]+ and [M + NH4]+) and 8 472 negative precursor ions ([M−H]− and [M−2H]2−) were 

organized into MN with 101 and 61 clusters (nodes ≥ 2), respectively. These clusters were comprised of 569 

and 273 nodes, respectively. The nodes in the MN were color-coded to represent the relative content of 

metabolites at the three different fermentation times. Self-linked points at the bottom of the network 

represented spectra not classified into molecular families.  

 

 

Fig. 1.FBMNanalysis of fermented chili sauce extracts using liquid chromatography-tandem mass spectrometry: 
identification and highlighting of major metabolite classes. 

ESI+:Fatty acids and derivatives (A), sphingolipids (B), carotenes (C), n-fructosyl amino acids (D), amino acids (E), and 
flavonoids (F);ESI−:glycosides (G), oxidized fatty acids (H), andflavonoids (I). 
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Node color ratios represent the relative abundance of substances in the three sets of samples. Round-rectangle nodes indicate 
matched substances in the MS-DIAL database. 

In the positive electrospray ionization (ESI+) mode, the molecular families identified primarily consisted 

of fatty acids, sphingolipids, carotenoids, and amino acids. Conversely, the negative electrospray ionization 

(ESI−) mode revealed molecular families predominantly composed of glycosides, flavonoids, and oxidized 

fatty acids. Following manual de-duplication and merging, a total of 205 metabolites were annotated using the 

GNPS database. These metabolites were categorized into 12 major groups, including amino acids, phenolics, 

alkaloids, acids, terpenoids, flavonoids, lipids, ketones, esters, sugars, vitamins, and other classified 

constituents (Table S1). Notably, many of these metabolites had not been previously reported in chili sauce. 

Nevertheless, it is crucial to mention that approximately 70% of the nodes remain unidentified, underscoring 

the intricate nature of the metabolic composition within fermented chili sauce. 

To evaluate the reliability of the identified molecular families, manual analysis was performed on the 

MS2 fragments obtained from the FBMN database search results (Fig. 2). The essential characteristic 

information of these components can be found in Table S2. 
(A)                                                      (B)  
 

       
(C)                                                      (D)  

 

Fig. 2.Molecular family and structure deduction based on MS2 spectrometry. (A) Phytosphingosine; (B) L-Phenylalanine; (C) 
Afzelin;(D)Isoorientin. 

Within the sphingolipid family, the parent ion of phytosphingosine has an m/z value of 318.298 (Fig. 2A). 

Cleavage of the amide bond, followed by hydroxylation-amination reactions, generates fragment ions with 



J.Q. Wang et al. / Food Science and Human Wellness 14 (2025) 

 

m/z values of 60.0435 and 282.279. In the amino acid family, the fragment ion of L-phenylalanine is observed 

at m/z 120.081 (Fig. 2B). This fragment undergoes decarboxylation and subsequent loss of one amino group, 

resulting in a fragment ion at m/z 103.054. As an example in the flavonoid family (Fig. 2C), afzelin produces a 

fragment ion with an m/z value of 285.038 after the elimination of one molecule of rhamnose. Similarly, 

isoorientin (Fig. 2D) with a parent ion m/z value of 477.091 was identified based on the similarity of the 

secondary mass spectra in the flavonoid family. It undergoes glycoside loss, forming a fragment ion with an 

m/z value of 285.04, or an ion fragment peak with an m/z value of 59.014 due to ring breakage. 

The identification of metabolites with taste activity is crucial for enhancing the taste and flavor 

characteristics of chili sauce. However, annotating unknown metabolites presents a significant challenge in 

metabolomics. Previous investigations on chili sauce have mainly focused on a limited number of non-volatile 

compounds, such as capsaicinoids, amino acids, and organic acids[21]. In this study, we employed the FBMN 

tool, which utilizes powerful cloud computing capabilities, to annotate highly complex metabolomics data. 

This approach facilitated the efficient clustering of metabolites and eliminated redundant information, thereby 

improving the exploration and annotation efficiency of unknown components in chili sauce. 

3.2. Multivariate statistical analysis 

PCA is a commonly used multivariate analysis method in metabolomics, which allows for the 

identification of significant differences between sample groups. The PCA results obtained in this study reveal 

a clear clustering and separation among the three different fermentation times of chili sauce, indicating distinct 

metabolic compositions for each time point (Fig. 3). The first two principal components account for a total 

combined variance of 77.8%, suggesting that the model retains a substantial amount of information from the 

original data. Additionally, the PLS-DA model was employed to further screen and identify 33 differentiated 

markers representing 8 major categories of metabolites (R2X = 0.737, R2Y = 0.948, and Q2 = 0.874; Fig. 3B). 

These findings demonstrate the effectiveness of both PCA and PLS-DA models in detecting differences in the 

metabolic composition of chili sauce at different fermentation times. 
(A)                                                      (B)  

 
Fig.3.Chemometricanalysis of metabolites in chili sauce during different fermentation times. PCA score plots (A),PLS-DA 

score plot(B). Group 1−3 represent 0, 3, and 5 days of fermentation, respectively. 
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A semi-quantitative analysis of the 33 variability markers was conducted, using dihydrocapsaicin as a 

standard for reference (Table 1). The results revealed a significant increase in the lipid component, rising from 

24.1 μg/g to 307.7 μg/g. The content of organic acids initially rose from 0 μg/g to 327.5 μg/g, before slightly 

decreasing. Amino acids also displayed a slight increase, from 160.0 μg/g to 199.6 μg/g. Among the aromatic 

amino acids (AAA), Phe exhibited the most substantial increase, reaching 60.57 μg/g, while the contents of 

Tyr and Try were relatively low, amounting to less than one-third of the Phe content. 

To visualize the dynamic changes in these components, a heat map was generated (Fig. 4), utilizing a 

color gradient (from blue to red) to represent the relative content change from low to high. To gain further 

insights, the ClassyFire tool was employed, which is a web-based application facilitating rule-based structural 

classification of chemical entities[22]. By utilizing ClassyFire, the differential components were rapidly 

classified into eight distinct groups. This classification and compound description not only enhances our 

understanding of chemistry but also strengthens the correlation between chemistry, flavor formation, and 

biological activity. 

 

Fig. 4.Heat map comparison of differential metabolites in chili sauce during different fermentation times. The color-coded 
squares on the left indicate group classification information. 
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Table 1.Taste traits and contents of metabolite markers during LP fermented chili sauce. 

RT(min) m/z 
VIP 

scores 
Formula Compounds Tastetrait 

0 
day(mg/g) 

3 days 
(mg/g)

5 days 
(mg/g)

4.037 131.0672 
1.851 

C6H12O3 
2-Hydroxy-4-methylpentanoic 

acid 
Sour (0.918) ND 40.85 43.79

5.486 165.0507 1.846 C9H10O3 3-Phenyllactic acid Sour (0.969) ND 32.85 32.59
1.460 193.0310 1.446 C6H10O7 D-Sorbosonicacid Sour (0.999) ND 6.29 ND 
1.440 195.0464 2.517 C6H12O7 Gluconic acid Sour (0.968) ND 47.36 30.43
1.709 89.0216 4.500 C3H6O3 Lactic acid Sour (0.980) ND 185.24 117.54
2.911 181.0461 1.191 C9H10O4 3-(4-Hydroxyphenyl)lactic acid Sour (0.941) ND 14.92 13.66
1.594 203.0520 2.427 C7H8N4O2 Theophylline Bitter (0.999) 106.70 51.18 38.17
1.619 175.1188 1.717 C6H14N4O2 Arginine Sweet (0.893) ND 9.73 ND 
7.272 211.1428 1.058 C11H18N2O2 Cyclo(proline-leucine) Bitter (0.940) ND 4.00 ND 
2.757 132.1007 1.994 C6H13NO2 D-Alloisoleucine Sweet (0.813) 15.15 35.33 20.43
1.763 145.0588 2.192 C5H10N2O3 Glutamine Sweet (0.964) 44.31 ND 5.66 
2.436 132.1008 2.629 C6H13NO2 Isoleucine Sweet (0.813) 47.36 ND 24.15
1.622 128.0313 2.189 C5H7NO3 L-5-Oxoproline Sweet (0.648) 23.77 55.06 67.82
2.487 180.0619 1.429 C9H11NO3 m-Tyrosine ND 0.27 8.50 2.25 
4.686 164.0662 2.462 C9H11NO2 Phenylalanine Sweet (0.931) ND 53.46 60.57
5.822 203.0766 1.447 C11H12N2O2 Tryptophan Sweet (0.971) 29.16 26.52 18.72
2.367 182.0801 1.078 C9H11NO3 Tyrosine Bitter (0.507) ND 3.61 ND 
8.223 565.1525 2.129 C26H28O14 Ambocin Sweet (0.641) ND ND 14.81
8.269 431.0876 1.353 C21H20O10 Kaempferol-7-O-deoxyhexoside Sweet (0.505) ND 16.90 14.63
8.476 287.0539 1.276 C15H10O6 Luteolin Bitter (1.000) ND 5.03 ND 
13.859 302.3032 5.618 C18H39NO2 Dihydrosphingosine Sweet (0.575) ND 107.95 233.32
8.590 329.2247 1.490 C18H34O5 Fatty acids (18:1;3O) Sour (0.776) 20.50 ND ND 
15.542 269.2432 1.371 C17H34O2 Heptadecanoic acid Sour (1.000) 3.63 20.05 21.59
12.940 318.2981 2.550 C18H39NO3 Phytosphingosine Sweet (0.547) ND 66.03 52.86
5.278 268.1034 1.581 C10H13N5O4 Adenosine Bitter (0.814) 26.33 ND 1.51 
9.155 353.2274 2.441 C22H28N2O2 Anileridine Bitter (0.930) 8.13 20.73 ND 
1.573 104.1069 1.236 C5H14NO Choline Bitter (0.751) 29.50 23.61 17.00
11.983 330.2037 1.052 C20H27NO3 Hetisine Bitter (0.865) ND 3.43 ND 
6.916 177.0148 2.142 C9H6O4 6,7-Dihydroxycoumarin Bitter (0.656) ND 42.66 41.77
6.647 109.0265 1.016 C6H6O2 Catechol Sweet (0.685) ND 14.98 15.34
11.422 294.2067 1.067 C17H27NO3 N-Vanillylnonanamide ND ND ND 3.68 
3.678 163.0353 1.819 C9H8O3 trans-4-Coumaric acid Sour (0.654) ND ND 9.63 
1.985 360.1497 1.287 C12H22O11 Isomaltulose Sweet (0.996) 1.73 4.93 ND 

Note: *Values in parentheses indicate probabilities, and ND stands for not detected. 

Chili sauce lipids are prone to oxidation and degradation due to microbial metabolism, leading to the 

generation of a diverse range of aroma compounds, including alcohols, aldehydes, ketones, acids, and esters. 

Prior investigations into chili sauce have predominantly concentrated on free amino acids (FAAs), organic 

acids, and volatile aroma components[23-24], with inadequate attention given to lipid composition. Hence, the 

objective of this study is to investigate the chemical properties and dynamics of lipids in LP, aiming to 

enhance comprehension of the formation of chili sauce flavor. 

3.3. Identification of taste-active metabolites using VirtualTaste 

In this study, the taste attributes of the 33 differential components were assessed using the VirtualTaste 

tool. The results, presented in Table 1, identified 13 metabolites related to sweetness, including arginine, 

D-alloisoleucine, glutamine, isoleucine, L-5-oxoproline, phenylalanine, ambocin, 

kaempferol-7-O-deoxyhexoside, dihydrosphingosine, phytosphingosine, catechol, and isomaltulose. 

Additionally, 9 metabolites related to sour taste were identified, namely 2-hydroxy-4-methylpentanoic acid, 
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3-phenyllactic acid, D-sorbosonic acid, gluconic acid, lactic acid, 3-(4-hydroxyphenyl)-lactic acid, fatty acids, 

heptadecanoic acid, and trans-4-coumaric acid. Finally, 9 metabolites related to bitterness were identified, 

including theophylline, cyclo(proline-leucine), tyrosine, luteolin, adenosine, anileridine, choline, hetisine, and 

6,7-dihydroxycoumarin. 

Fermented chili sauce is widely consumed and highly regarded as a popular condiment. However, despite 

its widespread popularity, our understanding of its flavor profile and the specific taste-active metabolites 

responsible for its sensory attributes remains limited. In this study, our objective was to address these 

knowledge gaps and identify key taste-active metabolites in fermented chili sauce, with a particular emphasis 

on exploring the potential improvements offered by the utilization of LP in its production. 

While traditional sensory evaluation methods involving trained experts play a crucial role in assessing 

the quality of fermented chili sauce, they are often time-consuming, expensive, and carry potential risks 

associated with direct taste assessment. Consequently, there is an urgent need for an effective and efficient 

method to predict the taste characteristics of compounds present in fermented chili sauce. Machine learning 

modeling has emerged as a promising approach for taste prediction in the realm of food ingredients. A 

noteworthy instance is the VirtualTaste online tool, meticulously crafted for this purpose. It has showcased 

remarkable performance, reporting a 96% accuracy in predicting sweet and bitter tastes using an independent 

test set[25]. 

The utilization of LP in chili sauce production offers specific improvements in product quality and 

sensory attributes. LP, a probiotic lactic acid bacterium, is known for enhancing the flavor and texture of 

fermented foods. One notable improvement is the development of a more complex and well-rounded flavor 

profile. Through our analysis, we successfully identified the top 5 main taste-active metabolites in fermented 

chili sauce: dihydrosphingosine, isoleucine, phytosphingosine, lactic acid, and gluconic acid. 

Dihydrosphingosine, isoleucine, and phytosphingosine contribute to the sauce's sweet taste properties, while 

lactic acid and gluconic acid are associated with its sour taste properties. Our findings provide crucial insights 

into the taste markers that play a significant role in chili sauce production, allowing for potential adjustments 

to enhance and refine the overall taste qualities of the sauce according to diverse consumer preferences. 

Furthermore, the unique flavor of chili sauce is mainly attributed to their alkaloids, especially 

capsaicinoids. In our study, we observed that the fermentation process involving LP did not have a significant 

impact on the total content of capsaicinoids in chili peppers, suggesting that it does not affect the spiciness of 

the sauce. This finding adds to our understanding of LP fermented chili sauce, its flavor profile, and the 

specific taste-active metabolites that play a significant role in its sensory attributes. 

3.4 KEGG annotation and interpretation of pathway 

Pathway enrichment analysis, a widely used bioinformatics method for detecting enriched metabolic or 

signaling pathways using metabolomics data, was performed in this study. The Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis successfully identified 33 differential metabolites associated with 29 

metabolic pathways. The findings of the study are visually presented in Fig. 5A, which demonstrates the 
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significance of each pathway using both P-values and impact factors. Notably, pathways with greater 

significance are represented by larger and darker bubbles in the figure. A rigorous screening process was 

conducted to identify significant pathways, including those involved in amino acid tRNA, phenylalanine, 

tyrosine, and tryptophan biosynthesis, as well as sphingolipid metabolism. This screening process involved 

setting a P-value threshold of less than 0.05 and an influence factor threshold of greater than 0.1, or 

alternatively, a P-value threshold of less than 0.001. 

A 

 
 
 
 

B 
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C 

 
Fig. 5.Pathway analysis of differential metabolites in fermented chili sauces.(A) Identification of key metabolic pathways and 

enrichment analysis; (B)Sphingolipid metabolism;(C) Phenylalanine, tyrosine, and tryptophan biosynthesis. 

The present study highlights the crucial role of serine (C00065) as a precursor in the biosynthesis of 

dihydrosphingosine (C00836) and phytosphingosine (C12144) (Fig. 5B), 2 vital sphingolipids involved in the 

early stages of sphingolipid biosynthesis. These sphingolipids are essential for cellular functions such as 

signal transduction, cell growth, and apoptosis. The biosynthesis of sphingolipids involves enzymatic 

reactions with various precursor molecules, and serine plays a particularly significant role in this process. 

Therefore, the availability of serine significantly impacts the efficiency of sphingolipid biosynthesis, which in 

turn influences taste perception[26]. Additionally, two other metabolic pathways were identified as key 

pathways of AAA metabolism, including phenylalanine, tryptophan, and tyrosine metabolism. Chorismate 

(C00251) was identified as a crucial precursor material that is converted to anthranilate (C00108) and 

prephenate (C00254) (Fig. 5C), ultimately leading to AAA formation[27]. AAAs have been shown to be 

essential precursors of monoamine neurotransmitters, playing a crucial role in regulating behavior, emotional 

function, and antioxidant biosynthesis[28-29]. Therefore, the physiological modulatory effects of fermented 

chili sauce are well recognized, providing valuable insights into the metabolic pathways underlying its taste 

development and potential implications for enhancing flavor and nutritional properties. Modulating the 

proportions of these precursor metabolites could be a promising approach to optimize the taste profile of chili 

sauce. 

4. Conclusion 

In conclusion, the integration of metabolomics techniques with network computing tools has 

significantly advanced the identification of taste-active components in chili sauce, facilitating more effective 

prediction and understanding of the taste characteristics of compounds in fermented chili sauce. In this study, 

we successfully identified dihydrosphingosine, isoleucine, phytosphingosine, lactic acid, and gluconic acid as 

key taste-active metabolites in fermented chili sauce. These metabolites hold immense potential as taste 

markers, providing opportunities to optimize the taste qualities of chili sauce by adjusting their 
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proportions.Furthermore, pathway enrichment analysis has further supported our findings by uncovering the 

primary involvement of the identified taste-active metabolites in essential biochemical pathways, such as 

amino acid tRNA biosynthesis, phenylalanine, tyrosine, tryptophan biosynthesis, and sphingolipid 

metabolism. These insights deepen our understanding of the underlying biochemical processes associated 

with the taste characteristics of chili sauce. The findings presented in this study pave the way for further 

research and development in the field of chili sauce production, opening up new possibilities for tailored 

flavor profiles and improved sensory experiences. 
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